Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(mx=2-x\Leftrightarrow\left(m+1\right)x=2\).
Với \(m+1=0\Leftrightarrow m=-1\)phương trình tương đương:
\(0x=2\)(vô nghiệm:
Với \(m+1\ne0\Leftrightarrow m\ne-1\)phương trình tương đương:
\(x=\frac{2}{m+1}\).
Vậy với \(m=-1\)phương trình đã cho vô nghiệm, với \(m\ne-1\)phương trình đã cho có nghiệm duy nhất \(x=\frac{2}{m+1}\).
b) Bạn làm tương tự câu a).
2mx – m = 1 + x ⇔ 2mx – x = 1 + m ⇔ (2m – 1)x = 1 + m
Phương trình vô nghiệm khi 2m – 1 = 0 và 1 + m ≠ 0 ⇔ m = 1/2.
Phương trình vô nghiệm có dạng 0x = a (với \(a\in R;a\ne0\))
Ta có : 2mx - m = x + 1
<=> 2mx - x = m + 1
<=> x(2m - 1) = m + 1
=> 2m - 1 = 0 và \(m+1\ne0\)
<=> m = 0,5 và \(m\ne-1\)
Vậy để phương trình trên vô nghiệm thì m = 0,5
(Mình ko chắc lắm, nếu sai mong bạn thông cảm)
a)Bạn chỉ cần bê 1/2 vào tìm m bình thường
b)nx-2+n=3x
\(\Leftrightarrow\left(m-3\right)x+m-2=0\)
Để pt có nghiệm duy nhất thì m-3 khác 0 suy ra m khác 0
Khi đó nghiệm duy nhất là x=-m+2/m-3