K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2020

ĐKXĐ: \(1\le x\le3\)

Đặt \(\sqrt{x-1}+\sqrt{3-x}=a\Rightarrow\sqrt{2}\le a\le2\)

\(a^2=2+2\sqrt{4x-x^2-3}\Rightarrow\sqrt{4x-x^2-3}=\frac{a^2-2}{2}\)

Pt trở thành: \(a-\frac{a^2-2}{2}=m\) có nghiệm

\(\Leftrightarrow-\frac{1}{2}a^2+a+1=m\) có nghiệm

Xét \(f\left(a\right)=-\frac{1}{2}a^2+a+1\) trên \(\left[\sqrt{2};2\right]\)

\(f\left(\sqrt{2}\right)=\sqrt{2}\) ; \(f\left(2\right)=1\Rightarrow1\le f\left(a\right)\le\sqrt{2}\)

\(\Rightarrow1\le m\le\sqrt{2}\)

8 tháng 8 2021

Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$

$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$

mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$

=> m≥0

8 tháng 8 2021

Đặt : 

\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)

DKXĐ : \(-1\le x\le8\)

\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1) 

BBT của \(t^2\) :

 \(x\) \(-1\)                                  \(0\)                                  \(8\)
\(t^2\)

                                        \(9+2\sqrt{2}\)

\(9\)                                                                           \(9\)

\(t\)

                                        \(1+2\sqrt{2}\)

                                                                            \(1\)

          \(2\sqrt{2}\)                                                                    

 

\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)


Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)

\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)

BBT của \(f\left(t\right)\) :

 \(t\) \(1\)                                                             \(2\sqrt{2}\)
\(f\left(t\right)\)

                                                                                                                                         \(4\sqrt{2}-1\)

\(-6\)

 

\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\)   thì pt có nghiệm 

\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)

Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU

 

 

NV
5 tháng 1 2021

\(\Leftrightarrow\dfrac{3^x+3}{\sqrt{9^x+1}}=m\)

Đặt \(3^x=t>0\)

\(\Rightarrow\dfrac{t+3}{\sqrt{t^2+1}}=m\)

Xét hàm \(f\left(t\right)=\dfrac{t+3}{\sqrt{t^2+1}}\) khi \(t>0\) rồi lập BBT, từ đó xác định ra m có vẻ khá đơn giản

8 tháng 8 2021

Để pt có nghiệm thì

\(1+x\ne0\) và \(8-x\ne0\)

\(\Rightarrow x\ne-1\) và \(x\ne8\)

8 tháng 8 2021

\(\sqrt{1+x} +\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)

( mk viết thiếu đề)

 

NV
27 tháng 1 2022

ĐKXĐ: \(-3\le x\le1\)

\(4+2\sqrt{-x^2-2x+3}=m+1-x^2-2x\)

\(\Leftrightarrow x^2+2x+3+2\sqrt{-x^2-2x+3}=m\)

Đặt \(\sqrt{-x^2-2x+3}=t\in\left[0;2\right]\)

\(\Rightarrow-t^2+2t+6=m\)

Xét hàm \(f\left(t\right)=-t^2+2t+6\) trên \(\left[0;2\right]\)

\(f'\left(t\right)=-2t+2=0\Rightarrow t=1\)

\(f\left(0\right)=6;f\left(1\right)=7;f\left(2\right)=6\Rightarrow6\le m\le7\)

10 tháng 8 2021

Chép lại đề bài: ....
Đk: x\(\ge\)1
\(\sqrt[4]{x^2-1}=\sqrt[4]{\left(x-1\right).\left(x+1\right)} \) (1)
chia cả 2 vế cho (1): \(3.\sqrt[4]{\dfrac{x-1}{x+1}}+m.\sqrt[4]{\dfrac{x+1}{x-1}}=1\)    (đk: x>1)
Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\) (t>0)   => 3t +\(\dfrac{m}{t}\)=1
                                  <=> 3t2  -t+m=0 (2)
Đến đây ta biện luận nghiệm của pt (2) có nghiệm dương

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Lời giải:

a. Đặt $f(x)=x+\sqrt{2x^2+1}$

$f'(x)=1+\frac{2x}{\sqrt{2x^2+1}}=0\Leftrightarrow x=\frac{-1}{\sqrt{2}}$

Lập BBT ta thấy:

$f_{\min}=f(\frac{-1}{\sqrt{2}})=\frac{\sqrt{2}}{2}$

\(f(x)\to +\infty \) khi \(x\to +\infty; x\to -\infty \)

Do đó $x+\sqrt{2x^2+1}=m$ có nghiệm khi $m\geq \frac{\sqrt{2}}{2}$

b. TXĐ: $x\in [3;+\infty)$

BPT $\Leftrightarrow m(x-1)\leq \sqrt{x-3}+1$

$\Leftrightarrow m\leq \frac{\sqrt{x-3}+1}{x-1}$

Xét $f(x)=\frac{\sqrt{x-3}+1}{x-1}$
$f'(x)=0\Leftrightarrow x=7-2\sqrt{3}$

Lập BBT ta thấy $f_{\max}=f(7-2\sqrt{3})=\frac{1+\sqrt{3}}{4}$
Để BPT có nghiệm thì $m\leq \frac{1+\sqrt{3}}{4}$

 

 

NV
20 tháng 6 2021

\(1\le1+\sqrt{1-x^2}\le2\Rightarrow3\le3^{1+\sqrt{1-x^2}}\le9\)

Đặt \(3^{1+\sqrt{1-x^2}}=t\Rightarrow t\in\left[3;9\right]\)

Phương trình trở thành: \(t^2-\left(m+2\right)t+2m+1=0\) 

\(\Leftrightarrow t^2-2t+1=m\left(t-2\right)\Leftrightarrow m=\dfrac{t^2-2t+1}{t-2}\)

Xét hàm \(f\left(t\right)=\dfrac{t^2-2t+1}{t-2}\) trên \(\left[3;9\right]\)

\(f'\left(t\right)=\dfrac{t^2-4t+3}{\left(t-2\right)^2}\ge0\) ; \(\forall t\in\left[3;9\right]\Rightarrow f\left(t\right)\) đồng biến trên khoảng đã cho

\(\Rightarrow f\left(3\right)\le f\left(t\right)\le f\left(9\right)\Rightarrow4\le m\le\dfrac{64}{7}\)

Có 6 giá trị nguyên của m 

20 tháng 6 2021

Cho e hỏi tại sao điều kiện lại nằm trong khoảng [1,2] vậy ạ ?