Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(mx^2+2\left(m-1\right)x+m+3=0\)(Đk:m≠0)
\(\Delta'=\left(m-1\right)^2-m\left(m+3\right)\)
\(\Delta'=m^2-2m+1-m^2-3m\)
\(\Delta'=1-5m\)
a,Để pt có nghiệm kép
Thì\(\Delta'=0\)
\(\Leftrightarrow1-5m=0\Rightarrow m=\dfrac{1}{5}\)
b, Để pt có 2 nghiệm phân biệt
Thì\(\Delta'>0\)
\(\Leftrightarrow1-5m>0\Rightarrow m< \dfrac{1}{5}\)
c,Để pt có nghiệm
Thì\(\Delta'\ge0\)
\(\Leftrightarrow1-5m\ge0\Rightarrow m\le\dfrac{1}{5}\)
d, Để pt vô nghiệm
Thì\(\Delta'< 0\)
\(\Leftrightarrow1-5m< 0\Rightarrow m>\dfrac{1}{5}\)
Lời giải:
$m=0$ thì pt trở thành $-2x+3=0\Leftrightarrow x=\frac{3}{2}$
$m\neq 0$ thì pt là pt bậc 2 ẩn $x$
$\Delta'=(m-1)^2-m(m+3)=1-5m$
PT có nghiệm kép $\Leftrightarrow \Delta'=1-5m=0\Leftrightarrow m=\frac{1}{5}$
PT có 2 nghiệm pb $\Leftrightarrow \Delta'=1-5m>0$
$\Leftrightarrow m< \frac{1}{5}$
Vậy pt có 2 nghiệm pb khi $m< \frac{1}{5}$ và $m\neq 0$
PT có nghiệm khi \(\left[\begin{matrix} m=0\\ \Delta'=1-5m\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m\leq \frac{1}{5}\end{matrix}\right.\Leftrightarrow m\leq \frac{1}{5}\)
PT vô nghiệm khi $\Delta'=1-5m< 0$
$\Leftrightarrow m> \frac{1}{5}$
PT có 2 nghiệm pb
`<=>Delta'>0`
`<=>(m+1)^2-2m>0`
`<=>m^2+2m+1-2m>0`
`<=>m^2+1>0` luôn đúng.
`a,\sqrt{\Delta}=\sqrt{m^2+1}`
`=>x_1=(2m+2+\sqrt{m^2+1})/(2m)`
`=>-3x_1=(-6m-6-3\sqrt{m^2+1})/(2m)`
`=>x_1=(2m+2-\sqrt{m^2+1})/(2m)`
`=>-2x_1=(\sqrt{m^2+1}-m-1)/m`
b,Áp dụng vi-ét
`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`
PT có các nghiệm thì bạn phải ghi rõ đề chứ?
PT có 2 nghiệm pb
`<=>Delta>0`
`<=>4(m+1)^2-8m>0`
`<=>4m^2+8m+4-8m>0`
`<=>4m^2+4>0` luôn đúng.
`a,\sqrt{\Delta}=2\sqrt{m^2+1}`
`=>x_1=(2m+2+2\sqrt{m^2+1})/(2m)=(m+1+\sqrt{m^2+1})/,`
`=>-3x_1=(-3m-3-3\sqrt{m^2+1})/(m)`
`=>x_2=(2m+2-2\sqrt{m^2+1})/(2m)=(m+1-\sqrt{m^2+1})/m`
`=>-2x_2=(2\sqrt{m^2+1}-2m-2)/m`
b,Áp dụng vi-ét
`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`
PT có các nghiệm thì bạn phải ghi rõ đề chứ?
xét m=0 thay vào ptr đã cho được x=-1 (loại)
xét m khác 0
ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0
<=> (m2+m+1)2-4m(m+1) >0
<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0
<=> (m2+m)2-2(m2+m)+1>0
<=> (m2+m-1)2>0
<=> m2+m-1 khác 0
<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)
Gọi x1, x2 là hai nghiệm phân biệt của ptr
=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)
Vì ptr đã cho có hai nghiệm khác -1 nên
{x1 # -1 và x2 #-1
=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0
=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0
thay (1) vào
Với \(m=0\) không thỏa mãn
Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:
\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)
a) PT có nghiệm kép nếu
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)
Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)
b) Để pt có nghiệm phân biệt đều âm thì
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)
\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)
Vậy 0<m<\(\frac{1}{2}\)
định gõ ấn f5 cái thì thấy bạn làm xong r :((
giải nhanh quá !
cái biêủ thức đề bài biến đổi để kết hợp với pt tổng trong Viet ra hệ pt tìm ra x1 x2 ròi that vào pt tích trong viet
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x^2-2mx+m^2-m+3=0\left(1\right)\end{matrix}\right.\)
Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}1-2m+m^2-m+3\ne0\\\Delta'=m^2-\left(m^2-m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+4\ne0\left(\text{luôn đúng}\right)\\m>3\end{matrix}\right.\)
Vậy \(m>3\)
b.
Phương trình có 3 nghiệm pb khi và chỉ khi: \(mx^2+3x+m=0\) có 2 nghiệm pb khác 3
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\9m+9+m\ne0\\\Delta=9-4m^2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{9}{10}\\-\dfrac{3}{2}< m< \dfrac{3}{2}\end{matrix}\right.\)
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
\(\Leftrightarrow\left(m+1\right)^2-4m>0\)
\(\Leftrightarrow\left(m-1\right)^2>0\)
hay \(m\notin\left\{0;1\right\}\)
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-2\right)^2\)
Để pt có 2 nghiệm phân biệt
\(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)^2>0\\m-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m\ne2\end{matrix}\right.\)