K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

Đề viết sai bạn nhé. Phương trình là \(mx^2-2\left(3-m\right)x+m-4=0\) mới đúng.

ĐK: \(m\ne0\)

Để phương trình có nghiệm thì \(\Delta'=b'^2-ac=9-2m\ge0\Leftrightarrow m\le\dfrac{9}{2}\)

a) Phương trình có hai nghiệm đối nhau nên \(x_1+x_2=0\Leftrightarrow-\dfrac{-2\left(3-m\right)}{m}=0\Leftrightarrow m=3\) (thỏa mãn)

Vậy $m=3$ là giá trị cần tìm.

b) Phương trình có đúng một nghiệm âm nên nghiệm còn lại là không âm. 

Vậy hai nghiệm trên trái dấu nhau.

Để phương trình có nghiệm trái dấu thì \(P=x_1x_2< 0\Leftrightarrow\dfrac{m-4}{m}< 0\Leftrightarrow0\le m\le4\)

12 tháng 3 2023

\(mx^2-2\left(3-m\right)x+m-4=0\)

+)m=0=> \(x=-\dfrac{2}{3}\)

+) m\(\ne0\)

\(\Delta'=\left(3-m\right)^2-m\left(m-4\right)\)

\(=m^2-6m+9-m^2+4m=9-2m\)

Để phương trình có nghiệm \(\Rightarrow\Delta'\ge0\Rightarrow m\le\dfrac{9}{2}\)

Để phương trình có 2 nghiệm đối nhau 

\(\Leftrightarrow m+4< 0\Leftrightarrow m< -4\)

Để phương trình có 1 nghiệm

\(\Leftrightarrow\Delta'=0\Leftrightarrow m=\dfrac{9}{2}\)

\(\Leftrightarrow x=\dfrac{3-m}{m}=-\dfrac{1}{3}\)

NV
15 tháng 1

\(\Delta=\left(5m-2\right)^2-4m\left(2m+10\right)=17m^2-60m+4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5m-2}{m}\\x_1x_2=\dfrac{2m+10}{m}\end{matrix}\right.\)

a.

Phương trình có 2 nghiệm đối nhau

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1+x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\left(1\right)\\m\ne0\\\dfrac{5m-2}{m}=0\end{matrix}\right.\)

Từ \(\dfrac{5m-2}{m}=0\Rightarrow5m-2=0\Rightarrow m=\dfrac{2}{5}\)

Thế vào (1) kiểm tra thấy ko thỏa mãn.

Vậy ko tồn tại m thỏa mãn yêu cầu

b.

Pt có 2 nghiệm là nghịch đảo của nhau khi:

\(\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\\m\ne0\\\dfrac{2m+10}{m}=1\end{matrix}\right.\)

Từ \(\dfrac{2m+10}{m}=1\Rightarrow2m+10=m\)

\(\Rightarrow m=10\)

Thế vào \(17m^2-60m+4>0\) kiểm tra thấy thỏa mãn

Vậy \(m=10\)

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

3 tháng 3 2023

\(mx^2-2\left(m-1\right)x-4=0\)

Để pt có nghiệm kép thì \(\Delta=0\)

\(\Rightarrow\left[-2\left(m-1\right)\right]^2-4m\left(-4\right)=0\)

\(\Rightarrow4\left(m-1\right)^2+16m=0\)

\(\Rightarrow4\left(m^2-2m+1\right)+16m=0\)

\(\Rightarrow4m^2-8m+4+16m=0\)

\(\Rightarrow4m^2+8m+4=0\)

\(\Rightarrow4m^2+4m+4m+4=0\)

\(\Rightarrow4m\left(m+1\right)+4\left(m+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}4m+4=0\\m+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=-1\\m=-1\end{matrix}\right.\)

Vậy để pt có nghiệm kép thì \(m=-1\)

17 tháng 3 2019

\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)

Để pt có 2 nghiệm trái dấu thì 

\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)

18 tháng 3 2022

1) Để phương trình có hai nghiệm trái dấu thì

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.

Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.

2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.

Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.

3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.

4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).

Dấu "=" xảy ra khi x=16/5 (nhận).

Vậy minA=7/16 tại m=16/5.

NV
23 tháng 2 2021

Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)

Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)

\(\Leftrightarrow m+1>0\Rightarrow m>-1\)

\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)

Vậy không tồn tại m thỏa mãn yêu cầu đề bài