K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Chọn D

28 tháng 8 2019

Chọn A.

12 tháng 12 2018

6 tháng 12 2018

Chọn A.

AH
Akai Haruma
Giáo viên
1 tháng 2

Lời giải:

Đặt $2^x=t$ thì pt trở thành:

$t^2-2mt+2m=0(*)$

Ta cần tìm $m$ để pt $(*)$ có hai nghiệm $t>0$ phân biệt thỏa mãn $t_1t_2=4$

$(*)$ có 2 nghiệm thì:

$\Delta'=m^2-2m>0\Leftrightarrow m(m-2)>0\Leftrightarrow m>2$ hoặc $m<0$ (1)

Áp dụng định lý Viet, để $(*)$ có 2 nghiệm dương thỏa mãn tích 2 nghiệm bằng 4 thì:

\(\left\{\begin{matrix} S=t_1+t_2>0\\ P=t_1t_2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2m>0\\ 2m=4\end{matrix}\right.\Leftrightarrow m=2\) (2)

Từ $(1); (2)\Rightarrow$ không có giá trị nào của $m$ thỏa mãn

 

 

17 tháng 2 2017

Chọn D

25 tháng 8 2018

Chọn B