K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2023

Bài 5 :

Thay \(x=-3\) vào pt : \(3x+m-x-1=0\)

\(\Leftrightarrow3\left(-3\right)+m-\left(-3\right)-1=0\)

\(\Leftrightarrow-9+m+3-1=0\)

\(\Leftrightarrow m-7=0\)

\(\Leftrightarrow m=7\)

Vậy \(m=7\) để pt nhận \(x=-3\) là nghiệm

Bài 6 :

Thay \(x=1\) vào pt : \(\left(2m-4\right)x+6=0\)

\(\Leftrightarrow2mx-4x+6=0\)

\(\Leftrightarrow2m-4+6=0\)

\(\Leftrightarrow2m+2=0\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\) để pt nhận \(x=1\) là nghiệm

25 tháng 12 2021

\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)

Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)

25 tháng 12 2021

cứu mik với

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

19 tháng 7 2016

\(1.A=x^2+3x-1=-\left(x^2-2.x.\frac{3}{2}+\frac{3}{2}^2-\frac{5}{4}\right)\)

\(A=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0,x\in R\)

do đó \(-\left(x-\frac{3}{2}\right)^2\le0,x\in R\)

nên \(-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4},x\in R\)

Vậy \(Max_A=\frac{5}{4},x=\frac{3}{2}\)

19 tháng 7 2016

Các bạn hộ mình với nha ^^ Mình sẽ k ngay

a) Ta có: \(x^2+\dfrac{9x^2}{\left(x+3\right)^2}=40\)

\(\Leftrightarrow\dfrac{\left(x^2+3x\right)^2+9x^2}{\left(x+3\right)^2}=40\)

\(\Leftrightarrow x^4+6x^3+9x^2+9x^2=40\left(x+3\right)^2\)

\(\Leftrightarrow x^4+6x^3+18x^2=40\left(x^2+6x+9\right)\)

\(\Leftrightarrow x^4+6x^3+18x^2-40x^2-240x-360=0\)

\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)

\(\Leftrightarrow x^4+2x^3+4x^3+8x^2-30x^2-60x-180x-360=0\)

\(\Leftrightarrow x^3\left(x+2\right)+4x^2\left(x+2\right)-30x\left(x+2\right)-180\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+4x^2-30x-180\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-6x^2+10x^2-60x+30x-180\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-6\right)+10x\left(x-6\right)+30\left(x-6\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\cdot\left(x-6\right)\left(x^2+10x+30\right)=0\)

mà \(x^2+10x+30>0\forall x\)

nên \(\left(x+2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=6\end{matrix}\right.\)

Vậy: S={-2;6}

b) Ta có: (m-1)x+3m-2=0

\(\Leftrightarrow\left(m-1\right)x=2-3m\)

\(\Leftrightarrow x=\dfrac{2-3m}{m-1}\)

Để phương trình có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{2-3m}{m-1}\ge1\)

\(\Leftrightarrow\dfrac{2-3m}{m-1}-1\ge0\)

\(\Leftrightarrow\dfrac{2-3m-\left(m-1\right)}{m-1}\ge0\)

\(\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\)

\(\Leftrightarrow\dfrac{-4m+3}{m-1}\ge0\)

hay \(\dfrac{3}{4}\le m< 1\)

Vậy: Để phương trình (m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{3}{4}\le m< 1\)