Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cộng vế (1) và (2) đc: \(\left(x+y\right)^2+2\left(x+y\right)=2m+6\) (*)
Xem (*) là phương trình bậc hai 1 ẩn a = (x+y)
(*) có nghiệm khi \(1+2m+6\ge0\Leftrightarrow2m+7\ge0\Leftrightarrow m\ge-\frac{7}{2}\)
khi đó \(a=-1\pm\sqrt{2m+7}\Rightarrow x+y=-1\pm\sqrt{2m+7}\)
vậy hệ pt đã cho có nghiệm \(x=-1\pm\sqrt{2m+7}-y\) với mọi \(m\ge-\frac{7}{2}\)
Từ (2) suy ra \(\begin{cases}2-y\ge0\\x=\frac{y^2-4y+4}{y}\end{cases}\)
Lúc đó (1) có \(\frac{y^2-4y+4}{y}-y+m=0\Leftrightarrow m=\frac{4y-4}{y}\Leftrightarrow g\left(m\right)=f\left(y\right)\)
Xét hàm số \(f\left(y\right)=\frac{4y-4}{y}\)
- Miền xác định \(D=\left(-\infty;2\right)\)/\(\left\{0\right\}\)
- Đạo hàm \(f'\left(y\right)=\frac{4}{y^2}>0\) Hàm số đồng biến trên D
- Giới hạn
\(\lim\limits_{y\rightarrow-\infty}f\left(y\right)=4\)
\(\lim\limits_{y\rightarrow0^+}f\left(y\right)=-\infty\)
\(\lim\limits_{y\rightarrow0^-}f\left(y\right)=+\infty\)
Bảng biến thiên
x | -\(\infty\) 0 2 |
y' | + // + |
y | 4 +\(\infty\) // -\(\infty\) 2 |
Vậy để hệ có nghiệm : \(m\in\left(-\infty;2\right)\cup\left(4,+\infty\right)\)
* Điều kiện cần : Giả sử hệ đã cho có nghiệm duy nhất là (x;y), khi đó, dễ thấy (y;x) cũng là nghiệm của hệ. Do tính duy nhất suy ra y = x, thay vào (1) ta có :
\(x^2+x^2=m\left(x-1\right)\Leftrightarrow2x^2-mx+m=0\left(3\right)\)
Vì (3) có nghiệm kép nên \(\Delta=m^2-8m=0\Leftrightarrow\left[\begin{array}{nghiempt}m=0\\m=8\end{array}\right.\)
* Điều kiện đủ :
+ Khi m = 0 hệ phương trình đã cho trở thành
\(\begin{cases}xy+x^2=0\\xy+y^2=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x\left(y+x\right)=0\\y\left(x+y\right)=0\end{cases}\) (4)
Dễ thấy (1;-1) và (2;-2) là nghiệm (4), vậy m=0 không thỏa mãn đề bài
+)khi m=8 hệ phương trình đã trở thành \(\begin{cases}xy+x^2=8y-8\left(5\right)\\xy+y^2=8x-8\left(6\right)\end{cases}\)
lấy (5) trừ (6) được
\(x^2-y^2=8\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+8\right)=0\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=y\\y=-8-x\end{array}\right.\)
khi y=x thay vào (5) ta được \(2x^2-8x+8=0\Leftrightarrow x=2\Rightarrow y=2\)khi y=-8-x, thay vào (5) ta được
\(x\left(-8-x\right)+x^2=8\left(-8-x\right)-8\Leftrightarrow-8x=-64-8x-8\)(VÔ NGHIỆM
kết luận : Hệ phương trình có nghiệm duy nhất khi và chỉ khi m=8