K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2020

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\\left(a^2-1\right)b+\left(b^2-1\right)a+a+b=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\a^2b+ab^2=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab\left(a+b\right)=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab=\frac{m}{3}\end{matrix}\right.\)

Hệ đã cho có nghiệm khi và chỉ khi pt:

\(\left\{{}\begin{matrix}\frac{m}{3}\ge0\\\left(a+b\right)^2\ge4ab\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\9\ge\frac{4m}{3}\end{matrix}\right.\)

\(\Rightarrow0\le m\le\frac{27}{4}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)

\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)

\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)

\(\Leftrightarrow x=y\)

Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$

Để hpt có nghiệm thì pt trên có nghiệm 

$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$

$\Leftrightarrow m\geq 2.2-1+2.0=3$

Vậy $m\geq 3$

26 tháng 8 2021

Chị Akai Haruma ơi

18 tháng 12 2020

ĐK: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\left(\sqrt{x}+\sqrt{y}\right)^2-3\sqrt{xy}=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\\sqrt{xy}=m\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(\Rightarrow a,b\) là nghiệm phương trình \(t^2-t+m=0\left(1\right)\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm không âm

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\ge0\\x_1+x_2\ge0\\x_1x_2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{4}\\1\ge0\\m\ge0\end{matrix}\right.\Leftrightarrow0\le m\le\dfrac{1}{4}\)

NV
16 tháng 11 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\a^3+b^3=1-3m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\\left(a+b\right)^3-3ab\left(a+b\right)=1-3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=m\end{matrix}\right.\)

Để hệ đã cho có nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}1\ge4m\\1>0\\m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{4}\)

NV
13 tháng 12 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)

Hệ trở thành:

\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)

\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)

\(\Leftrightarrow-a^2+15a-42=m\)

Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)

\(\Rightarrow-42\le m\le12\)

NV
26 tháng 7 2020

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y-3}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=m\\a^2-1+b^2+3=2\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+m\\a^2+b^2=2m\end{matrix}\right.\)

\(\Rightarrow\left(b+m\right)^2+b^2=2m\)

\(\Leftrightarrow2b^2+2m.b+m^2-2m=0\) (1)

Hệ đã cho có nghiệm khi và chỉ khi (1) có ít nhất 1 nghiệm không âm

Để (1) có nghiệm \(\Leftrightarrow\Delta'=m^2-2\left(m^2-2m\right)\ge0\Rightarrow0\le m\le4\)

Để (1) có 2 nghiệm đều âm \(\Leftrightarrow\left\{{}\begin{matrix}b_1+b_2=-\frac{m}{2}< 0\\b_1b_2=\frac{m^2-2m}{2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\)

Vậy để hệ đã cho có nghiệm \(\Leftrightarrow0\le m\le2\)

26 tháng 12 2021

\(1,HPT\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)+\left(\dfrac{1}{y}-\dfrac{1}{x}\right)=0\\2y=x^3+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\dfrac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow2y=y^3+1\Leftrightarrow y^3-2y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{-1+\sqrt{5}}{2}\\y=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(\dfrac{-1+\sqrt{5}}{2};\dfrac{-1+\sqrt{5}}{2}\right);\left(\dfrac{-1-\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right)\)

\(2,HPT\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x^2+y^2\right)}+2\sqrt{xy}=16\\x+y+2\sqrt{xy}=16\end{matrix}\right.\\ \Leftrightarrow\sqrt{2\left(x^2+y^2\right)}=x+y\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\\ \Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\)

Vậy \(\left(x;y\right)=\left(4;4\right)\)

26 tháng 12 2021

\(3,\text{Sửa: }\left\{{}\begin{matrix}\sqrt{x^2+3}+\left|y\right|=\sqrt{3}\left(1\right)\\\sqrt{y^2+5}+\left|x\right|=\sqrt{x^2+5}\left(2\right)\end{matrix}\right.\)

Ta thấy \(\sqrt{x^2+3}\ge\sqrt{3};\left|y\right|\ge0\Leftrightarrow VT\left(1\right)\ge\sqrt{3}=VP\left(1\right)\)

Dấu \("="\Leftrightarrow x=y=0\)

Thay vào \(\left(2\right)\Leftrightarrow\sqrt{5}+0=\sqrt{5}\left(tm\right)\)

Vậy \(\left(x;y\right)=\left(0;0\right)\)

19 tháng 11 2019

Thử thôi chứ chả bt đúng hay sai

ĐKXĐ: \(\left\{{}\begin{matrix}x,y\ge2\\m\ge0\end{matrix}\right.\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x+1+y-2+2\sqrt{\left(x+1\right)\left(y-2\right)}=m\\y+1+x-2+2\sqrt{\left(y+1\right)\left(x-2\right)}=m\end{matrix}\right.\)

Lấy trên trừ dưới

\(2\sqrt{\left(x+1\right)\left(y-2\right)}=2\sqrt{\left(y+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(y+1\right)\left(x-2\right)=\left(x+1\right)\left(y-2\right)\)

\(\Leftrightarrow3x=3y\Leftrightarrow x=y\)

Vậy vs \(m\ge0\) pt có nghiệm thoả mãn đkxđ