K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 1 2017

Lời giải:

Để hàm $y$ nghịch biến thì

\(y'=\frac{m^2-4}{(m+x)^2}<0\Leftrightarrow m^2-4<0\Leftrightarrow -2< m<2(1)\)

Mặt khác \(x\in(-\infty,1)\) nên để hàm số xác định, tức \(x+m\neq 0\Rightarrow m\neq (-1,+\infty)\), tức là \(m\leq -1(2) \)

Kết hợp \((1),(2)\Rightarrow -2 < m \leq -1\)

14 tháng 12 2016

D.\(-2<0<= -1\)

19 tháng 12 2016

sao lại D, câu này mình và thầy giáo đang tranh cãi mà, thầy chọn A mình chọn B!

21 tháng 7 2017

\(-2< m\le1\)

24 tháng 6 2018

Hàm số \(y=\dfrac{mx+4}{x+m}\)có TXĐ: \(D=R\backslash\left\{-m\right\}\)

\(y'=\dfrac{m^2-4}{\left(x+m\right)^2}\)

Với \(m=\pm2\)thì \(y'=0,\forall x\ne\left\{-2;2\right\}\) hàm số đã cho trở thành hàm hằng.

Vậy hàm số nghịch biến khi\(y'< 0\Leftrightarrow m^2-4< 0\Leftrightarrow-2< m< 2\)

Khi đó hàm số nghịch biến trên các khoảng (−∞;−m)(−m;+∞).

Để hàm số nghịch biến trên khoảng (−∞;1) thì \(1\le-m\Leftrightarrow m\le1\)

Vậy \(-2< m\le-1\) thỏa yêu cầu bài toán.

NV
17 tháng 7 2021

\(y'=mx^2+14mx+14\)

- Với \(m=0\Rightarrow y'=14>0\) hàm đồng biến trên R (ktm)

- Với \(m\ne0\) bài toán thỏa mãn khi với mọi \(x>1\) ta có:

\(mx^2+14mx+14\le0\)

\(\Leftrightarrow m\left(x^2+14x\right)\le-14\)

\(\Leftrightarrow m\le\dfrac{-14}{x^2+14}\)

\(\Leftrightarrow m\le\min\limits_{x>1}\dfrac{-14}{x^2+14}\)

Xét hàm \(f\left(x\right)=\dfrac{-14}{x^2+14}\) với \(x>1\)

\(f'\left(x\right)=\dfrac{28\left(x+7\right)}{\left(x^2+14x\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)>f\left(1\right)=-\dfrac{14}{15}\Rightarrow m\le-\dfrac{14}{15}\)

19 tháng 4 2016

Hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)\(\Rightarrow y'\le0,x\in\left(1;+\infty\right)\) (*)

Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow4m^2-7m+1\le0\Leftrightarrow\frac{7-\sqrt{33}}{8}\le m\le\frac{7+\sqrt{33}}{8}\) thì theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\Rightarrow\) (*) luôn đúng.

Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow4m^2-7m+1>0\Leftrightarrow m\le\frac{7-\sqrt{33}}{8}\)  hoặc \(m\ge\frac{7+\sqrt{33}}{8}\)thì (*) đúng

\(\Leftrightarrow\) phương trình y'=0 có 2 nghiệm phân biệt \(x_1,x_2\) mà \(x_1<\)\(x_2\) và thỏa mãn x1 < x2 <= 1

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\)

Kết hợp trường hợp 1 và trường hợp 2 ta có 

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\) thì hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)

 
19 tháng 4 2016

Ta có : \(y'=\frac{m^2-4}{\left(x-m\right)^2},x\ne m\) nên hàm số (1) đồng biến trên khoảng (-\(\infty\);3] khi và chỉ khi \(\begin{cases}y'>0,x\in\left(-\infty;3\right)\\m\notin\left(-\infty;3\right)\end{cases}\)\(\begin{cases}m^2-4>0\\m>3\end{cases}\)

\(\Leftrightarrow\)m<-2 hoặc m>2 và m>3 <=> m>3

Vậy m>3 thì hàm số đồng biến trên khoảng (-\(\infty\);3]

24 tháng 7 2023

\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)

Có 19-2+1=18 giá trị nguyên của m thỏa mãn