K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

7 tháng 10 2019

Đáp án: C.

y' = 3 x 2  + 2(m + 3)x + m

y'(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = -3

Với m = -3, y' = 3 x 2  - 3 ⇒ y''(x) = 6x.

Vì y''(1) = 6 > 0 nên hàm số đạt cực tiểu khi m = -3.

25 tháng 6 2017

Đáp án: C.

y' = 3 x 2  + 2(m + 3)x + m

y'(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = -3

Với m = -3, y' = 3 x 2  - 3 ⇒ y''(x) = 6x.

Vì y''(1) = 6 > 0 nên hàm số đạt cực tiểu khi m = -3.

15 tháng 9 2023

\(y=x^3-3mx^2+\left(m-1\right)x+2\)

\(y'=3x^2-6mx+m-1\)

\(y''=6x-6=6\left(x-1\right)\)

Để hàm số trên đạt cực trị tại \(x_o=2\) khi và chỉ khi

\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)>0\end{matrix}\right.\) \(\)

\(\Leftrightarrow\left\{{}\begin{matrix}12-12m+m-1=0\\6\left(2-1\right)=6>0\left(luôn.đúng\right)\end{matrix}\right.\)

\(\Leftrightarrow11m=11\)

\(\Leftrightarrow m=1\)

Vậy với \(m=1\) thỏa yêu cầu đề bài.

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Sai điều kiện để hàm số đạt cực đại rồi em.

8 tháng 1 2019

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

∆ ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y CT  = y(1) = (16/3).

7 tháng 7 2018

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

Δ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y C T  = y(1) = (16/3).

Tìm tất cả các giá trị nguyên của m để hàm số y=x^8+(m-2)x^5-(m^2-4)x^4+1 đạt cực tiểu tại x=0.

m= 2 

nha bạn 

bạn muốn tl rõ hơn thì bạn tìm trên google

10 tháng 8 2021

m=t747hGÁY