Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm:
\(2x+m=\frac{x+3}{x+1}\Leftrightarrow2x^2+\left(m+1\right)x+m-3=0\)
\(\Delta=\left(m+1\right)^2-8\left(m-3\right)=\left(m-3\right)^2+16>0\)
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{m+1}{2}\\x_1x_2=\frac{m-3}{2}\end{matrix}\right.\)
Ta có: \(MN^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)
\(=5\left(x_1-x_2\right)^2=5\left(x_1+x_2\right)^2-20x_1x_2\)
\(=5\left(-\frac{m+1}{2}\right)^2-20\left(\frac{m-3}{2}\right)=\frac{5}{4}\left(m-3\right)^2+20\ge20\)
Dấu "=" xảy ra khi \(m=3\)
Lời giải:
Phương trình hoành độ giao điểm:
\(2x+m-\left(x+\frac{3}{x}+1\right)=0\)
\(\Leftrightarrow x^2+x(m-1)-3=0\)
Để hai đths cắt nhau tại hai điểm phân biệt thì pt trên phải có hai nghiệm phân biệt.
\(\Rightarrow \Delta=(m-1)^2+3>0\) (luôn đúng với mọi m)
Khi đó, gọi \(x_1,x_2\) là hai nghiệm của pt thì theo hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=1-m\\ x_1x_2=-3\end{matrix}\right.\)
Hai giao điểm là \(M(x_1,2x_1+m); N(x_2,2x_2+m)\)
\(MN=\sqrt{(x_1-x_2)^2+(2x_1+m-2x_2-m)^2}=\sqrt{5(x_1-x_2)^2}\)
Có \((x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=(m-1)^2+12\geq 12\)
\(\Rightarrow MN\geq \sqrt{60}\) hay \(MN_{\min}=\sqrt{60}\)
Dấu bằng xảy ra khi \(m=1\)
Phương trình hoành độ giao điểm: m x - 1 x + 2 = 2 x - 1 ( 1 )
Điều kiện: x ≠ - 2 Khi đó
(1) Suy ra: mx-1=(2x-1) (x+2) hay 2x2-(m-3)x-1=0 (2)
Đường thẳng d cắt (C) tại hai điểm phân biệt A; B khi và chỉ khi (1) có hai nghiệm phân biệt khi và chỉ khi ( 2) có hai nghiệm phân biệt khác -2
⇔ ∆ = [ - ( m - 3 ) ] 2 + 8 > 0 8 + 2 m - 6 - 1 ≠ 0 ⇔ m ≠ - 1 2 ( * )
Đặt A( x1; 2x1-1); B( x2; 2x2-1) với x1; x2 là hai nghiệm của phương trình (2).
Theo định lý Viet ta có
x 1 + x 2 = m - 3 2 x 1 x 2 = - 1 2 , k h i đ ó
A B = ( x 1 - x 2 ) 2 + 4 ( x 1 - x 2 ) 2 = 10 ⇔ 5 [ ( x 1 + x 2 ) 2 - 4 x 1 x 2 ] = 10 ⇔ ( m - 3 2 ) 2 + 2 = 2 ⇔ m = 3
thỏa (*).
Vậy giá trị m cần tìm là m =3.
Đáp án DPhương trình hoành độ gaio điểm của đồ thị (C) và đường thẳng
Gọi . Ta tính được khi m = 0