Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-y=m\Leftrightarrow y=2x-m\\ x-y=2m\Leftrightarrow y=x-2m\)
PT hoành độ giao điểm 2 đt đầu: \(2x-m=x-2m\Leftrightarrow x=-m\Leftrightarrow y=-3m\Leftrightarrow A\left(-m;-3m\right)\)
Để 3 đt đồng quy thì \(A\left(-m;-3m\right)\in mx-\left(m-1\right)y=2m-1\)
\(\Leftrightarrow-m^2+3m\left(m-1\right)=2m-1\\ \Leftrightarrow2m^2-5m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{17}}{4}\\m=\dfrac{5-\sqrt{17}}{4}\end{matrix}\right.\)
Gọi A là giao điểm của \(y=2x-1\) và \(y=x+2\)
Hoành độ A thỏa mãn:
\(2x-1=x+2\Rightarrow x=3\)
\(\Rightarrow y=5\)
\(\Rightarrow A\left(3;5\right)\)
3 đường thẳng đồng quy khi \(y=\left(2m+3\right)x-m+1\) đi qua A
\(\Rightarrow5=3\left(2m+3\right)-m+1\)
\(\Rightarrow m=-1\)
a. Gọi A là điểm 3 đường thẳng đồng quy
Phương trình hoành độ giao điểm của d1 và d2: 4/3x + 1= x-1 ⇔ 1/3x = -2 ⇔ x = -6
thay x = -6 vào d2 ⇒ y = -6 -1 = -7
Vậy A(-6;-7)
Để 3 đường thẳng đồng quy thì A thuộc d3 ⇒ -7 = m.(-6) + m+ 3
⇔ -7 = -6m + m + 3
⇔ -5m = -10
⇔ m=2
câu b
a. Gọi A là điểm 3 đường thẳng đồng quy
Phương trình hoành độ giao điểm của d1 và d2: x - m + 1= 2x ⇔ x = -m +1
thay x = -m +1 vào d2 ⇒ y = 2.(-m +1) = -2m +2
Vậy A(-m +1;-2m +2)
Để 3 đường thẳng đồng quy thì A thuộc d3 ⇒ -2m +2 = 2(2m-1).(-m +1) + 1/4
⇔ -2m +2 = -4m² +4m +2m-2 + 1/4
⇔ 4m² - 8m +15m/4=0
Giai pt bậc 2 được m=5/4 và m=3/4
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2=mx+m+3\)
\(\Leftrightarrow x^2-mx-m-3=0\) (I)
Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung
\(\Leftrightarrow\) Pt (I) có hai nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)
Vậy...
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
Xét ptr hoành độ của `(P)` và `(d)` có:
`x^2=mx-1`
`<=>x^2-mx+1=0` `(1)`
Để `(d)` cắt `(P)` tại `2` điểm pb thì ptr `(1)` có `2` `n_o` pb
`=>\Delta > 0`
`<=>(-m)^2-4 > 0`
`<=>m^2 > 4`
`<=>` $\left[\begin{matrix} m > 4\\ m < -4\end{matrix}\right.$
Với `m > 4` hoặc `m < -4`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=-m),(x_1.x_2=c/a=1):}`
Ta có:`x_2(x_1 ^2+1)=3`
`<=>x_2(x_1 ^2+x_1.x_2)=3`
`<=>x_1.x_2(x_1+x_2)=3`
`<=>1(-m)=3`
`<=>m=-3` (ko t/m)
Vậy không có gtr nào của `m` t/m yêu cầu đề bài
khó thế bạn