Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
\(\Leftrightarrow\left(2m+1\right)x-mx+3m=7m+5\)
\(\Leftrightarrow\left(m+1\right)x=4m+5\)
Pt vô nghiệm khi: \(\left\{{}\begin{matrix}m+1=0\\4m+5\ne0\end{matrix}\right.\) \(\Leftrightarrow m=-1\)
Pt vô số nghiệm khi: \(\left\{{}\begin{matrix}m+1=0\\4m+5=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn yêu cầu
Nhân 2 vế với x ta có :
\(\left(2m-1\right)x+5=x+1\)
\(< =>\left(2m-1\right)x^2+5x=x^2+x\)
\(< =>\left(2m-1\right)x^2-x^2+5x-x=0\)
\(< =>x^2\left(2m-2\right)+x\left(5-1\right)=0\)
\(< =>x\left[x\left(2m-2\right)+1\left(5-1\right)\right]=0\)
\(< =>x\left[2xm-2x+4\right]=0\)
\(< =>x\left[2\left(mx-x+2\right)\right]=0\)
\(< =>\orbr{\begin{cases}x=0\\2\left(mx-x+2\right)=0\end{cases}< =>\orbr{\begin{cases}x=0\\mx-x+2=0\end{cases}< =>x=0< =>m\in}}ℤ\)