Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Phạm Huyền Anh - Toán lớp 7 - Học toán với OnlineMath
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
Giá trị lớn nhất của A sẽ đạt khi mẫu của phần số A nhỏ nhất .
I x - 2017 I có giá trị nhỏ nhất khi x = 2017
Khi đó I x - 2017 I + 2 = 2
A = 4032 / 2 = 2016
Vậy để biểu thức A đạt giá trị lớn nhất thì x = 2017
GTLN A = 2016
Gọi \(A=\frac{3k}{\left(k+1\right)^2}\)
Đặt \(\frac{1}{k+1}=t\Rightarrow k+1=\frac{1}{t}\Rightarrow k=\frac{1}{t}-1\)
Khi đó \(A=\frac{3k}{\left(k+1\right)^2}=3k\cdot\frac{1}{\left(k+1\right)^2}=3\left(\frac{1}{t}-1\right)t^2\)
\(=-3t^2+3t=-3\left(t^2-t\right)=-3\left(t^2-t+\frac{1}{4}\right)+\frac{3}{4}=-3\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(t-\frac{1}{2}\right)^2\ge0\Rightarrow-3\left(t-\frac{1}{2}\right)^2\le0\Rightarrow A=-3\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(t=\frac{1}{2}\Leftrightarrow k=1\)
Vậy Amax = 3/4 khi k=1