Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)
3k+2 chia hết cho d => 15k+10 chia hết cho d
5k+3 chia hết cho d => 15k+9 chia hết cho d
=> 15k+10-15k-9 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N*
=> d=1
=> 3k+2 và 5k+3 nguyên tố cùng nhau
a: TH1: p=3
=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)
TH2: p=3k+1
=>p+14=3k+15=3(k+5)
=>Loại
TH3: p=3k+2
4p+7=4(3k+2)+7=12k+8+7
=12k+15
=3(4k+5) chia hết cho 3
=>Loại
b: TH1: p=5
=>p+6=11; p+12=17; p+8=13; p+24=29
=>NHận
TH2: p=5k+1
=>p+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+8=5k+10=5(k+2) chia hết cho 5
=>Loại
TH4: p=5k+3
p+12=5k+15=5(k+3)
=>loại
TH5: p=5k+4
=>p+6=5k+10=5(k+2)
=>Loại
a) nếu k=1
=>11.1=11 là số nguyên tố
nếu k=2,3,4,...... thì p.11 sẽ có nhiều hơn hai ước =>là hớp ố =>loại
vậy k=1
b)
k=2=>k+6=2+6=8 là hợp số =>loại
k=3=>k+6=3+6=9 là hợp số => loại
k=5=>k+6=11 ;k+8=13;k+12=17kk+14=19 là số nguyên tố => chọn
nếu k>5
=>k có dạng 5p+1;5p+2;5p+3;5p+4
nếu k=5p+1
=>k+14=5p+1+14=5p+15=5(p+3) chia hết cho 5 => loại
nếu k=5p+2
=>5p+8=5p+2+8=5p+10=5(p+2) chia hết cho 5 =>loại
nếu k=5p+3
=>k+2=5p+5 chia hết cho 5 => loại
nếu k=5p+4
=>k+6=5p+10 =5(p+2) chia hết cho 5 =>loại
vậy p=5
Ta có: k = 0 ⇒ 5k = 0: không phải là số nguyên tố cũng không phải là hợp số
- Nếu k = 1 ⇒ 5k = 5 là số nguyên tố
- Nếu k ≥ 2 và k ∈ N ⇒ 5k là hợp số (vì 5k có các ước 1; 5; k và 5k)
Vậy k = 1 thì 5k là số nguyên tố.