Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các giá trị của k để phương trình nghiệm âm:
\(\frac{1-x}{k-1}-\frac{x+1}{k+1}=\frac{2x}{1-k^2}\)
Xét phương trình: \(\frac{2x}{3}+\frac{2x-1}{5}=4-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{3}+\frac{x}{3}+\frac{2x-1}{5}=4\)
\(\Leftrightarrow x+\frac{2x-1}{5}=4\Leftrightarrow\frac{5x+2x-1}{5}=4\)
\(\Leftrightarrow7x-1=20\Leftrightarrow x=3\)
Để hai phương trình \(\frac{2x}{3}+\frac{2x-1}{5}=4-\frac{x}{3}\)và \(\left(k+1\right)x+k=26\)tương đương thì:
x = 3 là nghiệm của \(\left(k+1\right)x+k=26\)
\(\Rightarrow3\left(k+1\right)+k=26\Leftrightarrow3k+3+k=26\)
\(\Leftrightarrow4k=23\Leftrightarrow k=\frac{23}{4}\)
Vậy \(k=\frac{23}{4}\)thì hai phương trình trên tương đương
a) Thay x=2 vào phương trình ta có:
(2.2+1)(9.2+2k)+5(2+2)=40
5(18+2k)+20=40
90+10k=20
10k=-70
k=-7
b) Thay x=1 vào phương trình ta có:
2(2.1+1)+18=3(1+2)(2.1+k)
2+2+18=(3+6)(2+k)
22=20+18k
2=18k
k=1/9
a) Để phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2 thì Thay x=2 vào phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\), ta được:
\(\left(2\cdot2+1\right)^2\cdot\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow25\cdot\left(2k+18\right)-20=40\)
\(\Leftrightarrow25\left(2k+18\right)=60\)
\(\Leftrightarrow2k+18=\dfrac{12}{5}\)
\(\Leftrightarrow2k=-\dfrac{78}{5}\)
hay \(k=\dfrac{-39}{5}\)
Vậy: \(k=\dfrac{-39}{5}\)
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm