K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 11 2019

\(\left(1+x\right)^n\) có SHTQ \(C_n^kx^k\)

\(\Rightarrow\) số hạng chứa \(x^3\)\(k=3\)

Hệ số:

\(T=C_3^3+C_4^3+C_5^3+...+C_{50}^3\)

\(T=C_4^4+C_4^3+C_5^3+...+C_{50}^3\) (do \(C_3^3=1=C_4^4\))

\(T=C_5^4+C_5^3+C_6^3+...+C_{50}^3\)

\(T=C_6^4+C_6^3+...+C_{50}^3=...=C_{51}^4\)

NV
13 tháng 11 2019

Chắc bạn viết nhầm biểu thức \(B\left(x\right)\), có lẽ biểu thức đúng là thế này:

\(B\left(x\right)=\left(1+2x\right)^3+\left(1+2x\right)^4+...+\left(1+2x\right)^{22}\)

Số hạng tổng quát của khai triển \(\left(1+2x\right)^n\)\(C_n^k2^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển \(B\left(x\right)\) là:

\(T=2^3\left(C_3^3+C_4^3+...+C_{22}^3\right)=2^3.C_{23}^4\) (chứng minh tổng trong ngoặc tương tự câu trên)

NV
6 tháng 11 2019

a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)

Khai triển \(\left(2-3x^2+x^3\right)^5\)

\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)

Hệ số của số hạng chứa \(x^9\):

\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)

b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)

Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_5^4+C_5^3+...+C_{22}^3\)

\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)

Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)

NV
5 tháng 3 2022

\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)

Số hạng chứa \(x^{13}\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\) 

\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)

\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)

Hệ số....

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi

13 tháng 11 2023

a: \(y=\left(x^2-1\right)^2\)

=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)

\(=4x\left(x^2-1\right)\)

Đặt y'>0

=>\(x\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>\(x>1\)

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)

Đặt y'<0

=>\(x\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)

=>0<x<1

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>x<-1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)

Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)

b: \(y=\left(3x+4\right)^3\)

=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)

\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

c: \(y=\left(x+3\right)^2\left(x-1\right)\)

=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)

=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)

=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)

=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)

=>\(y'=3x^2-2x+3\)

\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)

=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)

=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(2x+2\right)\left(x^3-1\right)\)

=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)

\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)

\(=2x^3-2+6x^3+6x^2\)

\(=8x^3+6x^2-2\)

Đặt y'>0

=>\(8x^3+6x^2-2>0\)

=>\(x>0,46\)

Đặt y'<0

=>\(8x^3+6x^2-2< 0\)

=>\(x< 0,46\)

Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)

Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)

NV
20 tháng 7 2021

a. Đề bài sai, phương trình không giải được

b.

ĐKXĐ: \(x\ge-\dfrac{2}{3}\)

\(\left(2x+10\right)\left(\dfrac{1-\left(3+2x\right)}{1+\sqrt{3+2x}}\right)^2=4\left(x+1\right)^2\)

\(\Leftrightarrow\dfrac{\left(2x+10\right)4.\left(x+1\right)^2}{\left(1+\sqrt{3+2x}\right)^2}=4\left(x+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+1\right)^2=0\Rightarrow x=-1\\2x+10=\left(1+\sqrt{3+2x}\right)^2\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow2x+10=2x+4+2\sqrt{2x+3}\)

\(\Leftrightarrow\sqrt{2x+3}=3\)

\(\Leftrightarrow x=3\)

20 tháng 7 2021

cho em hỏi , em thấy câu a có nghiệm mà

NV
12 tháng 1

ĐKXĐ:

a.

\(2x-4>0\Rightarrow x>2\Rightarrow D=\left(2;+\infty\right)\)

b.

\(2x+8>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

c.

\(4-x>0\Rightarrow x< 4\Rightarrow D=\left(-\infty;4\right)\)

d.

\(\dfrac{1}{x+4}>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

e. 

\(\left(x-3\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-9\right)\cup\left(3;+\infty\right)\)

a: ĐKXĐ: 2x-4>0

=>2x>4

=>x>2

b: ĐKXĐ: 2x+8>0

=>2x>-8

=>x>-4

c: ĐKXĐ: 4-x>0

=>-x>-4

=>x<4

d: ĐKXĐ: \(\dfrac{1}{x+4}>0\)

=>x+4>0

=>x>-4

e: ĐKXĐ: \(\left(x-3\right)\left(x+9\right)>0\)

=>\(\left[{}\begin{matrix}x-3>0\\x+9< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\)

12 tháng 11 2023

a: \(y=\left(x-1\right)^3\)

=>\(y'=\left[\left(x-1\right)^3\right]'=3\left(x-1\right)^2\cdot\left(x-1\right)'\)

\(=3\left(x-1\right)^2\)

b: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

=>\(y'=2x^2-3+2\left(x+2\right)\)

\(=2x^2+2x+1\)

c: \(y=\left(x-1\right)^2\left(x+2\right)\)

=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)-\left(x^2-2x+1\right)\left(x+2\right)'\)

=>\(y'=\left(2x-2\right)\left(x+2\right)-x^2+2x-1\)

\(=2x^2+4x-2x-4-x^2+2x-1\)

=>\(y'=x^2+4x-5\)

c: \(y=\left(x^2-1\right)\left(2x+1\right)\)

=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)

\(=2x\left(2x+1\right)+2\left(x^2-1\right)\)

\(=4x^2+2x+2x^2-2=6x^2+2x-2\)

12 tháng 11 2023

a: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

=>\(y'=2x^2-3+\left(x+2\right)\cdot2x\)

\(\Leftrightarrow y'=2x^2-3+2x^2+4x=4x^2+4x-3\)

b: \(y=\left(x-1\right)^2\left(x+2\right)\)

=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)+\left(x^2-2x+1\right)\left(x+2\right)'\)

=>\(y'=\left(2x-2\right)\left(x+2\right)+\left(x^2-2x+1\right)\)

=>\(y'=2x^2+4x-2x-4+x^2-2x+1\)

=>\(y'=3x^2-3\)

c: \(y=\left(x^2-1\right)\left(2x+1\right)\)

=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)

=>\(y'=2x\left(2x+1\right)+2\left(x^2-1\right)\)

=>\(y'=4x^2+2x+2x^2-2=6x^2+2x-2\)

d: \(y=\left(x+2\right)\left(2x^2-5\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-5\right)+\left(x+2\right)\left(2x^2-5\right)'\)

=>\(y'=2x^2-5+2x\left(x+2\right)=4x^2+4x-5\)