Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Điều kiện xác định: .
Ta có: .
.
Khi đó nhị thức Niu-tơn có số hạng tổng quát:
.
Số hạng chứa x 5 có giá trị k thỏa mãn: 14 - 3k = 5 => k = 3.
Vậy hệ số của số hạng chứa x 5 là: .
a, Số hạng trong khai triển có dạng là :
\(T_{k+1}=C_{10}^k.x^{10-k}.\left(-2\right)^k\)
b, Số hạng chứa \(x^8\) \(\Leftrightarrow x^{10-k}=x^8\)
\(\Leftrightarrow10-k=8\)
\(\Leftrightarrow k=10-8\)
\(\Leftrightarrow k=2\)
Hệ số của số hạng chứa \(x^8\)là :
\(T_3=C_{10}^2.\left(-2\right)^2=180\)
`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`
`<=>(2+1)^n=59049`
`<=>3^n=59049`
`<=>n=10 =>(2x^2+1/[x^3])^10`
Xét số hạng thứ `k+1:`
`C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`
`=C_10 ^k 2^[10-k] x^[20-5k]`
Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`
Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`