Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)
Do đó: x=12; y=16
\(a,Sửa:\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\ b,\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
Ta có: x/3 = y/4 => 4x = 3y
Mà x + y = 28 => 4(x + y) = 4.28 => 4x + 4y = 112
Do đó 3y + 4y = 112
=> 7y = 112
=> y = 112/7 = 16
=> x = 28 - 16 = 12
b, Tương tự nha bạn
a) Áp dụng t/c dtsbn
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{28}{7}=4\)
\(\Rightarrow x=4.3=12\)
\(y=4.4=16\)
Ta có
x + y = 32
=> 3x + 3y = 96
3x = 5y
=> 5y + 3y = 96
=> 8y = 96
=> y = 12
Mà ta có x + y = 32
=> x + 12 = 32
=> x = 32 - 12 = 20
Kết luận
Ta có x là 20 và y là 12
a) Ta có: \(x:2=y:\left(-5\right)\)
nên \(\dfrac{x}{2}=\dfrac{y}{-5}\)
mà x-y=-7
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{y}{-5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(-2;5)
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{8}=\dfrac{y}{12}\)(1)
Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)
nên \(\dfrac{y}{12}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
mà x+y-z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Vậy: (x,y,z)=(16;24;30)
b)
Do đó ta có
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
⇒ \(x=3.2=6\)
⇒ \(y=5.2=10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/5=y/3=(x+y)/(5+3)=32/8=4`
`-> x/5=y/3=4`
`-> x=4*5=20, y=4*3=12`
Ta có `x/5 =y/3` và `x+y=32`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/3 =(x+y)/(5+3)=32/8=4`
`=>x/5=4=>x=4.5=20`
`=>y=3=4=>y=4.3=12`
Vậy `x=20;y=12`