K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: a=36

b=6

19 tháng 12 2021

bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)

26 tháng 8 2021

đặt a=12x,b=12y(x<y và ucln(x,y)=1 và x,y<1) do bcnn(a,b)=180 nên 180chia hết cho a và b nên 180 chia hết cho 12xy suy ra 15 chia hết cho xy mà x,y>1 và x<y nên x=3,y=5 suy ra a=36,b=60

5 tháng 11 2021
☺😊🥰😇😊😉🙃😂😍🤩😗☺☺😙😙
26 tháng 7 2015

Ngọc Nguyễn Minh bn ấy đổi rồi mà

15 tháng 10 2023

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

15 tháng 10 2023

 Ko bt