Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thứ nhất và số thứ hai phải tìm lần lượt là a,b
+)Theo đầu bài tổng của 2 số này bằng 17
=>ta có phương trình:a+b=17(1)
+)Nếu tăng thêm số thứ nhất 3 đơn vị và tăng số thứ 2 2 đơn vị thì tích của chúng bằng 105
=>ta có phương trình:(a+3)(b+2)=105(2)
Từ (1)(2) ta có hệ phương trình
<=>
Giải pt (x)
(17-b+3)(b+2)=105
<=>(20-b)(b+2)=105
<=>-b^2+18b+40=105
<=>b^2-18b-40=-105
<=>b^2-18b+65=0
<=>b^2-13b-5b+65=0
<=>b(b-13)-5(b-13)=0
<=>(b-5)(b-13)=0
<=>b=5 hoặc b=13
+)nếu b=5=>a=12
+)nếu b=13=>a=4
Vậy 2 số phải tìm là(12;5);(4;13)
Gọi 2 số lần lượt là a và b
Theo bài ra a+b=17 và (a+3)(b+2)=ab+45
Giải hệ phương trình ta sẽ ra là a=5;b=12
Vậy 2 số cần tìm là 5 và 12
Gọi số thứ nhất và số thứ hai phải tìm lần lượt là a,b
+)Theo đầu bài tổng của 2 số này bằng 17
=>ta có phương trình:a+b=17(1)
+)Nếu tăng thêm số thứ nhất 3 đơn vị và tăng số thứ 2 2 đơn vị thì tích của chúng bằng 105
=>ta có phương trình:(a+3)(b+2)=105(2)
Từ (1)(2) ta có hệ phương trình\(\left\{{}\begin{matrix}a+b=17\\\left(a+3\right)\left(b+2\right)2=105\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=17-b\\\left(17-b+3\right)\left(b+2\right)=105\left(x\right)\end{matrix}\right.\)
Giải pt (x)
(17-b+3)(b+2)=105
<=>(20-b)(b+2)=105
<=>-b^2+18b+40=105
<=>b^2-18b-40=-105
<=>b^2-18b+65=0
<=>b^2-13b-5b+65=0
<=>b(b-13)-5(b-13)=0
<=>(b-5)(b-13)=0
<=>b=5 hoặc b=13
+)nếu b=5=>a=12
+)nếu b=13=>a=4
Vậy 2 số phải tìm là(12;5);(4;13)
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$
số thứ nhất bằng 4
số thứ hai bằng 13
(giải hệ phương trình x+y=17 và
(x+3)(y+2)=105) là ra bạn ak !
X+Y=17
vậy X=17-Y (1)
and (X+3)*(Y+2)=105 (2)
thay (1) vào(2)
ta tim được Y=5
thay Y vào 1)
tìm được X=12
111111111111111111111111111111111111111111111111111111111111111111111
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59