K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

\(\frac{a}{x+1}+\frac{b}{1-x}\)

\(=\frac{a\left(1-x\right)+b\left(x+1\right)}{\left(x+1\right)\left(1-x\right)}\)

\(=\frac{a-a.x+bx+b}{1-x^2}\)

\(=\frac{\left(b-a\right).x+\left(a+b\right)}{1-x^2}=\frac{1}{1-x^2}\)

\(\Leftrightarrow\left(b-a\right)x+\left(a+b\right)=1\)

Sử dụng đồng nhất hệ số :

\(\hept{\begin{cases}b-a=0\\a+b=1\end{cases}}\)

\(\Rightarrow a=b=\frac{1}{2}\)

Vậy ...

9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko

8 tháng 10 2017

ĐKXĐ : \(x\ne\left\{-1;2\right\}\)

\(\frac{x^2+5}{x^3-3x-2}=\frac{a}{x-2}+\frac{b}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{x^2+5}{\left(x-2\right)\left(x+1\right)^2}=\frac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{x^2+5}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+2ax+a+bx-2b}{\left(x-2\right)\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{x^2+5}{\left(x-2\right)\left(x+1\right)^2}=\frac{ax^2+x\left(2a+b\right)+\left(a-2b\right)}{\left(x-2\right)\left(x+1\right)^2}\)

Đồng nhất hệ số ta được : \(\hept{\begin{cases}a=1\\2a+b=0\\a-2b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)

Vậy \(a=1;b=-2\)

8 tháng 10 2017

giúp tớ vs bài này khó wa

24 tháng 11 2018

2, \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)

<=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

<=>\(\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

<=>x=y=z=0

24 tháng 11 2018

4,

a, \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)

=>\(\frac{1}{x\left(x^2+1\right)}=\frac{ax^2+a+bx^2+cx}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)

Đồng nhất 2 phân thức ta được:

\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)

b,a=1/4,b=-1/4

c, a=-1,b=1,c=1

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

21 tháng 8 2017

\(\frac{a}{x}+\frac{b}{x+1}+\frac{c}{x+2}=\frac{a\left(x+1\right)\left(x+2\right)+bx\left(x+2\right)+c\left(x+1\right)x}{x\left(x+1\right)\left(x+2\right)}\)

\(=\frac{a\left(x^2+3x+2\right)+b\left(x^2+2x\right)+c\left(x^2+x\right)}{x\left(x+1\right)\left(x+2\right)}=\frac{ax^2+3ax+2a+bx^2+2bx+cx^2+cx}{x\left(x+1\right)\left(x+2\right)}\)

\(=\frac{x^2\left(a+b+c\right)+x\left(3a+2b+c\right)+2a}{x\left(x+1\right)\left(x+2\right)}=\frac{1}{x\left(x+1\right)\left(x+2\right)}\)

Đồng nhất phân thức ta được : \(\hept{\begin{cases}a+b+c=0\\3a+2b+c=0\\2a=1\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-1\\c=\frac{1}{2}\end{cases}}}\)

Vậy \(a=\frac{1}{2};b=-1;c=\frac{1}{2}\)