K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2016

lop may ma kho vay

16 tháng 3 2016

mình tìm được 6 bạn nhé!

22 tháng 10 2017

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

22 tháng 7 2016

A= x^3-3x^2+3x5 

=x2(3x3+x-3)

Để giá trị của A nhỏ nhất 

=>x=2.Thay x=2 vào ta đc:

A=22(3*23+2-3)=4(3*8+2-3)

=4(24+2-3)=4*23=92

B=x^3 + 6x^2+12x-1   

=x3+6x2+12x+8-9

=(x+2)3-9

Để giá trị của B nhỏ nhất 

=>x=-1.Thay x=-1 vào ta được:

B=[(-1)+2]3-9=[1]3-9=-8

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

28 tháng 8 2016

\(3x^2+6x+1=3\left(x^2+2x+\frac{1}{3}\right)=3\left(x^2+2x.1+1^2-1^2+\frac{1}{3}\right)=3\left[\left(x+1\right)^2-\frac{2}{3}\right]=\)

\(=3\left(x+1\right)^2-2\)

Vậy giá trị lớn nhất là -2 tại x = -1
Câu B tương tự

28 tháng 8 2016

a) 10

b)13

26 tháng 9 2016

a)1
b)6,25
c)7
d)281/64
e)5

2 tháng 4 2018

a) Đặt A = \(3x^2+6x+4\)

\(A=3\left(x^2+2x+1\right)+1\)

\(A=3\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)

Vậy Min A =1 khi x = -1

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)