Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(4x^2+2.2x.y+y^2\right)-\left(2x+y\right)+y^2-5y+10\)
\(=\left(2x+y\right)^2-2.\left(2x+y\right).\frac{1}{2}+\frac{1}{4}+\left(y^2-2.y.\frac{5}{2}+\frac{25}{4}\right)+\frac{7}{2}\)
\(=\left(2x+y-\frac{1}{2}\right)^2+\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)
Đẳng thức xảy ra khi y = 5/2 và \(x=\frac{1}{2}\left(\frac{1}{2}-y\right)=-1\)
vậy..
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y)
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm
dau = cay ra <=> x=y=z=1/3
1,
4x2+2y2+4xy-4x-6y+2019
=4x2+(4xy-4x)+(y2-2y+1)+(y2-4y+4)+2014
=4x2+2.2x(y-1)+(y-1)+(y-2)2+2014
=(2x+y-1)2+(y-2)2+2014>=2014
vì (2x+y-1)2 >=0 với mọi x,y
(y-2)2 >=0 với mọi y
dấu "=" xảy ra khi y-2=0 suy ra y=2
và 2x+y-1=0 suy ra x=-1/2
vậy 4x4+2y2+4xy -4x-6y+2019 min =2014 khi và chỉ khi x=-1/2,y=2
2,
ta có x2-6x+10=(x-3)2+1>=1
vì (x-3)2>=0 với mọi x
=> 1/x2-6x+10<=1(theo tính chất thì với a>=b thì 1/a<=1/b với a,b cùng dấu)
=> -3/x2-6x+10>=-3
dấu "="xảy ra khi x-3=0 =>x=3
vậy -3/x2-6x+10 min=-3 <=>x=3
D ez nhất :v
\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)
Đẳng thức xảy ra khi x = 1 và y = -2
\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)
\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1
a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)
\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)
d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Ta có D=4x2+2y2+4xy-2x-6y+10
\(\Leftrightarrow\left(2x\right)^2+2.2x.y+y^2+y^2+2.y.3+3^2+1\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(y+3\right)^3+1\)
Vì \(\left(2x+y\right)^2\)và \(\left(y+3\right)^2\ge0\)nên\(D\ge1với\forall x,y\)
Dấu = xảy ra khi \(x=\frac{3}{2}\)và \(y=-3\)
Vậy D đạt giá trị nhỏ nhất bằng 1 khi\(x=\frac{3}{2}:y=-3\)
chúc bạn học tốt