Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
là \(4x+\dfrac{1}{x^2}+2x+2\) hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0
ĐKXĐ: x>=0
\(Q=\dfrac{x-8}{\sqrt{x}+1}=\dfrac{x-1-7}{\sqrt{x}+1}\)
\(=\sqrt{x}-1-\dfrac{7}{\sqrt{x}+1}\)
=\(\sqrt{x}+1-\dfrac{7}{\sqrt{x}+1}-2\)
=>\(Q>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{7}{\sqrt{x}+1}}-2=2\sqrt{7}-2\)
Dấu '=' xảy ra khi \(\left(\sqrt{x}+1\right)^2=7\)
=>\(\sqrt{x}+1=\sqrt{7}\)
=>\(\sqrt{x}=\sqrt{7}-1\)
=>\(x=8-2\sqrt{7}\)
TXĐ:R
Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)
<=> \(Ax^2-Ax+A-x^2-1=0\)
<=> \(\left(A-1\right)x^2-Ax+A-1=0\)
TH1: A =1 => x =0
TH2: A khác 1
phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)
<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)
A min =2/3 thay vào => x
A max =2 thay vào tìm x .
Dùng miền giá trị đi , lười làm quá