Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)
\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)
\(=\left(7x+5+3x-5\right)^2\)
\(=\left(10x\right)^2=100x^2\)
Thay x=-2 vào A, ta được:
\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)
b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)
\(=8x^3+y^3-8x\left(x^2-1\right)\)
\(=8x^3+y^3-8x^3+8x\)
\(=8x+y^3\)
Thay x=-2 và y=3 vào B, ta được:
\(B=-2\cdot8+3^3=-16+27=11\)
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
a)
\(a^2+b^2+2ab+2a+2b+1\)
\(=(a^2+2ab+b^2)+(2a+2b)+1\)
\(=(a+b)^2+2(a+b)+1^2=(a+b+1)^2\)
b)
\(3x(x-2y)+6y(2y-x)\)
\(=3x(x-2y)-6y(x-2y)=(3x-6y)(x-2y)=3(x-2y)(x-2y)\)
\(=3(x-2y)^2\)
c)
\(16xy+4y^2-9+16x^2\)
\(=(16x^2+16xy+4y^2)-9\)
\(=(4x+2y)^2-3^2=(4x+2y-3)(4x+2y+3)\)
d)
\(x^4+64y^8=(x^2)^2+(8y^4)^2=(x^2)^2+(8y^4)^2+2.x^2.8y^4-2x^2.8y^4\)
\(=(x^2+8y^4)^2-16x^2y^4=(x^2+8y^4)^2-(4xy^2)^2\)
\(=(x^2+8y^4-4xy^2)(x^2+8y^4+4xy^2)\)
e)
\(3x^2-7x+2=3x^2-6x-x+2=(3x^2-6x)-(x-2)\)
\(=3x(x-2)-(x-2)=(3x-1)(x-2)\)
Sorry nhá mk nhầm dấu + nên kq sai :
Ta có : (x + 3)(x - 11) + 2003
= x2 - 8x + 1970
= x2 - 8x + 16 + 1954
= (x - 4)2 + 1954
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1954 \(\ge1954\forall x\)
Vậy GTNN của biểu thức là : 1954 khi và chỉ khi x = 4
Ta có : (x + 3)(x - 11) + 2003
= x2 - 8x + 33 + 2003
= x2 - 8x + 2026
= x2 - 8x + 16 + 2010
= (x - 4)2 + 2010
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 2010 \(\ge2010\forall x\)
Vậy GTNN của biểu thức là : 2010 khi và chỉ khi x = 4