K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

ai ,mình tích  lại

2 tháng 7 2017

2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2 
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y) 
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm 
dau = cay ra <=> x=y=z=1/3

6 tháng 8 2017

a) \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra khi 3x - 1 = 0

hay 3x = 1 hay \(x=\dfrac{1}{3}\)

Vậy GTNN của biểu thức là 1 khi x = \(\dfrac{1}{3}\).

b) \(x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)

Vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\).

c) \(2x^2+2x+1\)

\(=2\left(x^2+x\right)+1\)

\(=2\left(x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\right)+1\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

Ta có: \(2\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)

Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)

Vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=-\dfrac{1}{2}\).

d) \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu "=" xảy ra khi x - 1 = 0 hay x = 1

Vậy GTNN của biểu thức là 4 khi x = 1.

6 tháng 8 2017

a) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\ge1\forall x\)

\(\Rightarrow\) GTNN của biểu thức là 1 khi \(\left(3x-1\right)^2=0\Leftrightarrow3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)

vậy GTNN của biểu thức là 1 khi \(x=\dfrac{1}{3}\)

b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)

vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)

c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)

\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)

vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=\dfrac{-1}{2}\)

d) \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\) GTNN của biểu thức là 4 khi \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

vậy GTNN của biểu thức là 4 khi \(x=1\)

5 tháng 7 2016

Rối mắt , loạn thần kinh toàn là x không

5 tháng 7 2016

Nhiều quá bạn ơi oho

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

10 tháng 3 2019

B= \(4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+15\)

\(\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+15\ge15\)

=> GTNN của B là 15

3 tháng 8 2019

a. A= \(x^2-4x+5=\left(x-2\right)^2+1\ge1\)

Vậy minA=1<=> x=2

b. B=\(2x^2-4x-6=\left(x\sqrt{2}-\sqrt{2}\right)^2-8\ge-8\)

Vậy minB=-8 <=> x=1

c. C=\(3x^2+9x+6=\left(\sqrt{3}x+\frac{\sqrt{3}}{2}\right)^2-\frac{3}{4}\ge\frac{-3}{4}\)

Vậy minC=-3/4 <=> x=-3/2

d. D=\(5x^2+5x+1=\left(\sqrt{5}x+\frac{\sqrt{5}}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)

Vậy minD=-1/4 <=> x=-1/2

2 tháng 10 2016

P=n3+4n-5=n3-n+5n-5=n(n2-1)+5(n-1)

=n(n-1)(n+1)+5(n-1)=(n-1)[n(n+1)+5]

=(n-1)(n2+n+5)

Vì n \(\in\) N nên n2+n+5 > 1

Để P là số nguyên tố thì n-1=1=>n=2

Thử lại thấy n=2 thỏa mãn

Vậy n=2

21 tháng 12 2016

1) a)  x  =  -7 / 44

    b)  x  =  -1 / 8

22 tháng 12 2017

\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)

Câu khác giải TT