Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4)D=x^2+x+1\)
\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.
Các câu khác lm tương tự nhé.
Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy
hok tốt~
\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )
\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)
\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )
\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)
\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )
\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )
\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)
\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )
\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)
\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )
1: \(D=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
6: \(F=2\left(x^2+2x+\dfrac{3}{2}\right)=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>0\)
7: \(=3\left(x^2-\dfrac{5}{3}x+1\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)
\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>0\)
8: \(=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
a: \(H\left(x\right)=-x^5+x^4-3x^3+2x^2-5x-2+x^5-x^4+3x^3-2x^2+3x+11\)
=-2x+9
Đặt H(x)=0
=>-2x+9=0
hay x=-9/2
b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)
a: H(x)=−x5+x4−3x3+2x2−5x−2+x5−x4+3x3−2x2+3x+11�(�)=−�5+�4−3�3+2�2−5�−2+�5−�4+3�3−2�2+3�+11
=-2x+9
Đặt H(x)=0
=>-2x+9=0
hay x=-9/2
b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)
A=4x^4+6x^2y^2+2x^2+20y^2
(''^'' là mũ nha!!!!)
Tính A khi x^2+y^2=10
Giúp mk với mk đang cần gấp!!!
sorry
đay là đúng nè
4x4+6x2y2+2x2+20y2
=4x4+4x2y2+2x2y2+3x2+20y2
=4x2(x2+y2)+2y2(x2+y2)+ 20y2
=4x2.10+2y2.10+ 20y2
=40x2+20y2+ 20y2
=40x2+40y2
=40. (x2+y2)
=40.10=400
Vì \(\left[\left|2x-1\right|+3\right]^2\ge0;\left[\left|2y+1\right|+4\right]^2\ge0\)
\(\Rightarrow D\ge10\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left[\left|2x-1\right|+3\right]^2=0\\\left[\left|2y+1\right|+4\right]^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-1\right|+3=0\\\left|2y+1\right|+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-1\right|=-3\\\left|2y+1\right|=-4\end{matrix}\right.\)
\(\Rightarrow\) x và y không tồn tại
Vì \(\left|2x-1\right|\ge0;\left|2y+1\right|\ge0\)
Vậy x, y không tồn tại để D có giá trị nhỏ nhất