Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(x2-x+1)2
Có \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)
=>\(A>=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
MinA=9/16 <=> x=1/2
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
\(H=2x^2-x+4==2\left(x^2-\frac{1}{2}x+2\right)\)
\(=2\left[x^2-2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{31}{8}\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\)
Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)
=> \(2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-\frac{1}{4}\right)^2=0\Rightarrow x=\frac{1}{4}\)
Vậy \(H_{min}=\frac{31}{8}\)khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x\right)\)
\(=\frac{1}{2}\left(x^2+2\cdot x\cdot3+3^2\right)-\frac{9}{2}\)
\(=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> \(\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3
Vậy \(I_{min}=-\frac{9}{2}\)khi x = -3
1) \(H=2x^2-x+4=2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{31}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow x=\frac{1}{4}\)
Vậy Min(H) = 31/8 khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x+9\right)-\frac{9}{2}=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\frac{1}{2}\left(x+3\right)^2=0\Rightarrow x=-3\)
Vậy Min(I) = -9/2 khi x = -3
b) mình khỏi ghi đề lại ha :3
=> 2x^2 - 4x + 2 + 3x^2 + 12x + 12 - 25x^2 + 1= 15
sau đó bạn gom lại những số vd như là 4x với 12x,..... rồi tính ra đc là
-20x^2 + 8x + 15 = 15
=> -20x^2 + 8x = 0
=> 2x ( -10x + 4 ) = 0
=> 2x = 0 => x= 0
hoặc -10x +4 = 0
=> -10x = -4
=> x = 4/ 10
a) ( 2x-3)^ 2 - ( 2x + 5) ^ 2 = 18
=> 4x^2 - 12x + 9 - ( 4x^2 + 20x + 25 ) = 18
=> 4x^2 - 12x + 9 - 4x^2 - 20x - 25 = 18
=> (4x^2- 4x^2) + (-12x - 20x) + ( 9 -25 ) = 18
=> 0 - 32x - 16 = 18
=> -32x = 32
=> x = -1
bạn đợi mình type câu b :v
\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a)\(2x^2\)+\(3\left(x^2-1\right)\)=\(5x\left(x+1\right)\)
\(2x^2\)+\(3x^2\)\(-3\)=\(5x^2+5x\)
\(5x^2-5x^2-5x=3\)
\(-5x=3\)
\(x=\frac{-3}{5}\)
tự ghi dấu suy ra ở đằng trước nhé
b) Vì \(2x\left(5-3x\right)=2x\left(3x-5\right)-3\left(x-7\right)=3\)
nên chỉ cần giải: \(6x^2-10x-3x+21=3\)
\(\Leftrightarrow6x^2-13x+21=3\)
\(\Leftrightarrow6x^2-13x+18=0\)
\(\Rightarrow\)pt vô nghiệm
Đặt : P = \(\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
Dấu "=" xảy ra <=> \(2x^2-3x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy GTNN của P là 2016 đạt tại x = 0 hoặc x = 3/2
mik làm xong rồi bạn ạ:))