K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

\(E=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-n\right|\)

\(\left\{{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|x-2\right|\ge x-2\\.................\\ \left|x-n\right|\ge x-n\end{matrix}\right.\)

Cộng vào ta có:

\(E\ge x-1+x-2+....+x-n\)

\(E\ge nx-\left(1+2+....+n\right)\)

Dấu "=" xảy ra khi:

\(x>0\)

\(\Leftrightarrow-x^3-x⋮x^2-2\)

\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)

\(\Leftrightarrow-3x^2⋮x^2-2\)

\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{1;-1;2;-2\right\}\)

3 tháng 6 2015

b) 3x - 6 - (8x + 4) - (10x + 15) = 50

=> 3x - 6 - 8x - 4 - 10x - 15  = 50

=> (3x - 8x - 10x)  =  6+ 4 + 15 + 50

=> -15x = 75 => x = 75 : (-15) = -5

c) => 2x - 3 = 2 - x hoặc 2x - 3 = - (2 - x) (Vì 2 số  có giá trị tuyệt đối bằng nhau thì chings bằng nhau hoặc đối nhau)

+) nếu 2x - 3 = 2 - x => 2x+ x = 2 + 3 => 3x = 5 => x = 5/3

+) nếu 2x - 3 = -(2 - x) => 2x - 3 = -2 + x => 2x - x = -2 + 3 => x = 1

Vậy x = 5/3 hoặc x = 1

3 tháng 6 2015

a) (n-1)n+11-(n-1)n=0

(n-1)n(n-1)11-(n-1)n=0

(n-1)n[(n-1)11-1]=0

(n-1)n=0 hoặc (n-1)11-1=0

n-1=0   hoặc  (n-1)11   =1

n=1      hoặc  n-1         =1

n=1      hoặc   n          =2

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x

a) 

 \(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)

b) 

   \(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)