Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
P=\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
=\(3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\)
AD BĐT cô si :
Ta có \(3x+\dfrac{12}{x}\ge2\sqrt{3x.\dfrac{12}{x}}=2\sqrt{36}=12\)
\(y+\dfrac{16}{y}\ge2\sqrt{y.\dfrac{16}{y}}=2\sqrt{16}=8\)
\(2\left(x+y\right)\ge2.6=12\)
=> P\(\ge12+8+12=32\)
Dấu = xra \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(2;4\right)\)
Vậy GTNN của P=32 khi (x;y)=(2;4)
\(A=5x+3y+\frac{12}{x}+\frac{16}{y}=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)
Áp dụng BĐT AM-GM cho 2 số không âm:
\(A=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{\frac{36x}{x}}+2\sqrt{\frac{16y}{y}}+2\left(x+y\right)\)
\(=12+8+2\left(x+y\right)\ge32\) (Do \(x+y\ge6\))
Vậy Min A = 32. Dấu "=" xảy ra <=> x=2; y=4.
`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
làm bừa thui,ai tích mình mình tích lại
số dư lớn nhất bé hơn 175 là 174
số nhỏ nhất có 4 chữ số là 1000
Mà 1000:175=5( dư 125)
số đó là:
Áp dụng bất đẳng thức \(AM-GM\) đối với từng bộ số trong \(D\) ta có:
\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy, GTNN của \(D\) là \(32\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)