K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2

 

28 tháng 11 2016

\(A=x^2-x+2009\)

\(=x^2-x+\frac{1}{4}+2008,75\)

\(=\left(x-\frac{1}{2}\right)^2+2008,75\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+2008,75\ge2008,75\)

Dấu ''='' xảy ra khi \(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

\(MinA=2008,75\Leftrightarrow x=\frac{1}{2}\)

28 tháng 11 2016

Ta có :

\(x^2-x+2009\)

\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+2009-\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{8035}{4}\)

\(\left(x-\frac{1}{2}\right)^2+\frac{8035}{4}\ge\frac{8035}{4}\forall x\)

Dấu " = " xảy ra khi x = 1/2

Vậy ......

21 tháng 10 2023

a: A=(x-1)(x-3)(x2-4x+5)

\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)

\(=\left(x^2-4x+4\right)^2-1\)

\(=\left(x-2\right)^4-1>=-1\)

Dấu = xảy ra khi x-2=0

=>x=2

b: \(B=x^2-2xy+2y^2-2y+1\)

\(=x^2-2xy+y^2+y^2-2y+1\)

\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)

Dấu = xảy ra khi x-y=0 và y-1=0

=>x=y=1

c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)

\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)

\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)

\(=-\left(x^2+5x\right)^2+36+5\)

\(=-\left(x^2+5x\right)^2+41< =41\)

Dấu = xảy ra khi \(x^2+5x=0\)

=>x(x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

12 tháng 3 2019

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)

.......... 

12 tháng 3 2019

\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)

\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)

\(\Leftrightarrow\)\(x=-2040\)

Vậy phương trình có nghiệm là : x = -2040

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

NV
21 tháng 7 2021

\(I=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2021\)

\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2021\)

\(=-\left[\left(x^2+5x\right)^2-6^2\right]+2021\)

\(=-\left(x^2+5x\right)^2+2057\le2057\)

\(I_{max}=2057\) khi \(x^2+5x=0\)

\(K=-\left(x-2\right)\left(x-7\right)\left(x-5\right)\left(x-4\right)+102\)

\(=-\left(x^2-9x+14\right)\left(x^2-9x+20\right)+102\)

\(=-\left(x^2-9x+14\right)\left(x^2+9x+14+6\right)+102\)

\(=-\left[\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)\right]+102\)

\(=-\left[\left(x^2-9x+14\right)+6\left(x^2-9x+14\right)+9-9\right]+102\)

\(=-\left(x^2-9x+17\right)^2+111\le111\)

\(K_{max}=111\) khi \(x^2-9x+17=0\)

NV
21 tháng 7 2021

\(M=-\left(4x^2+4x+1\right)\left(16x^2+16x+3\right)-11\)

Đặt \(4x^2+4x+1=t\Rightarrow16x^2+16x=4t-4\)

\(\Rightarrow M=-t\left(4t-4+3\right)-11\)

\(M=-4t^2+t-11\)

\(M=-4\left(t-\dfrac{1}{8}\right)^2-\dfrac{175}{16}\le-\dfrac{175}{16}\)

\(M_{max}=-\dfrac{175}{16}\) khi \(t=\dfrac{1}{8}\)

21 tháng 10 2023

a: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7>=-7\)

Dấu = xảy ra khi x=2

b: \(B=\left(x-3\right)^2+\left(x-1\right)^2\)

\(=x^2-6x+9+x^2-2x+1\)

\(=2x^2-8x+10\)

\(=2x^2-8x+8+2\)

\(=2\left(x-2\right)^2+2>=2\)

Dấu = xảy ra khi x=2