Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(3\times x-15\right)^7=0.\)
\(3\times x-15=0\)
\(3\times x=15\)
\(x=5\)
b ) \(10-\left\{\left[\left(x\div3+17\right)\div10+3\times2^4\right]\div10\right\}=5\)
\(10-\left\{\left[\left(x\div3+17\right)\div10+3\times16\right]\div10\right\}=5\)
\(10-\left\{\left[\left(x\div3+17\right)\div10+48\right]\div10\right\}=5\)
\(\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\left(x\div3+17\right)\div10+48=50\)
\(\left(x\div3+17\right)\div10=2\)
\(x\div3+17=20\)
\(x\div3=3\)
\(x=9\)
Ta có : \(\left|x+3\right|\ge0\forall x\)
\(\left|2x-5\right|\ge0\forall x\)
\(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|\ge0\forall x\)
Dấu = xảy ra khi : \(\left|x+3\right|=0\); \(\left|2x-5\right|=0\); \(\left|x-7\right|=0\)
* \(\left|x+3\right|=0\Rightarrow x=-3\)
*\(\left|2x-5\right|=0\Rightarrow x=\frac{5}{2}\)
*\(\left|x-7\right|=0\Rightarrow x=7\)
TH1 : Với x = - 3 ta thay vào biểu thức đề bài cho ta được:
\(\left|-3+3\right|+\left|2.\left(-3\right)-5\right|+\left|-3-7\right|\)
\(=0+11+10=21\)
TH2 : Với \(x=\frac{5}{2}\)ta thay vào biểu thức đề bài cho ta được:
\(\left|\frac{5}{2}+3\right|+\left|2.\frac{5}{2}-5\right|+\left|\frac{5}{2}-7\right|\)
\(=\frac{11}{2}+0+\frac{9}{2}=10\)
TH3 : Với x = 7 ta thay vào biểu thức đề bài cho ta được:
\(\left|7+3\right|+\left|2.7-5\right|+\left|7-7\right|\)
\(=10+9+0=19\)
Vậy với \(x=\frac{5}{2}\)thì \(\left|x+3\right|+\left|2.x-5\right|+\left|x-7\right|\)nhỏ nhất và = 10
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
c,\(43+x=2.5^2-\left(x-57\right)\)
\(< =>43+x=50-x+57\)
\(< =>2x=50+57-43\)
\(< =>x=\frac{107-43}{2}=32\)
d,\(-3.2^2\left(x-5\right)+7\left(3-x\right)=5\)
\(< =>-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(< =>-12x+60+21-7x=5\)
\(< =>-19x=5-81=-76\)
\(< =>x=-\frac{76}{-19}=4\)
Bài 2:
a) \(A=\left|x-3\right|+10\)
Vì \(\left|x-3\right|\ge0\forall x\)\(\Rightarrow\left|x-3\right|+10\ge10\forall x\)
hay \(A\ge10\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(minA=10\Leftrightarrow x=3\)
b) \(B=-7+\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-7+\left(x-1\right)^2\ge-7\forall x\)
hay \(B\ge-7\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=-7\Leftrightarrow x=1\)
1.
Do: $(x-3y)^2\geq 0; (2x-1)^4\geq 0$ với mọi $x,y\in\mathbb{R}$
$\Rightarrow A\geq 0+0+3=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x-3y=2x-1=0$
$\Leftrightarrow x=\frac{1}{2}; y=\frac{1}{6}$
2.
$|x-2|\geq 0$
$|3x-2y|\geq 0$
$\Rightarrow B\geq 0+0-4=-4$
Vậy $B_{\min}=-4$
Giá trị này đạt tại $x-2=3x-2y=0\Leftrightarrow x=2; y=3$
3.
$|x+1|\geq 0, \forall x\in\mathbb{R}$
$|y-3|\geq 0, \forall y\in\mathbb{R}$
$\Rightarrow |x+1|+|y-3|+2\geq 2$
$\Rightarrow \frac{1}{|x+1|+|y-3|+2}\leq \frac{1}{2}$
$\Rightarrow C\geq \frac{-4}{2}=-2$
Vậy $C_{\min}=-2$. Giá trị này đạt tại $x+1=y-3=0$
$\Leftrightarrow x=-1; y=3$
4. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-5|+|x-1|=|5-x|+|x-1|\geq |5-x+x-1|=4$
$\Rightarrow D=|x-5|+|x-1|+7\geq 11$
Vậy $D_{\min}=11$. Giá trị này đạt tại $(5-x)(x-1)\geq 0$
$\Leftrightarrow 5\geq x\geq 1$
Mình viết đề sai ở câu b
B = | x +3| +x+7