Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+1)2+(b-2)2=4
=> (a+1)2+(b-2)2=22+02=02+22
TH1: a+1=2 => a=2-1=1
b-2=0 => b=0+2=2
TH2: a+1=0 => a=0-1=-1
b-2=2 => b=2+2=4
Vậy có 2 cặp số nguyên (a;b) thỏa mãn là (1; 2) và (-1; 4).
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
chào bn
4x=3y và x.y=12
4x=3y=>x/3=y/4 và x.y=12
Đặt k=x/3=y/4.ta có x=3k,y=4k
từ x.y=12=>3k.4k=12=>12k^2=12=>k^2=1=>k=± 1
Với k=1 thì x/3=y/4=1=>x=3,y=4
Với k=-1 thì x/3=y/4=-1=>x=-3,y=-4
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)
Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)
=> \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .
\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn
a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu
Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)
=> -1 < x < 2
Vậy -1 < x < 2
b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu
Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy x>2 hoặc x < \(\frac{2}{3}\)
B=x2-2.x.1/2+1/4+3/4=(x-1/2)2+3/4>=3/4 VỚI MỌI X
DẤU "=" XẢY RA khi x-1/2=0<=>x=1/2
vậy minB=3/4 tại x=1/2