K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2020

\(S=\dfrac{2018x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017x^2+x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017}{2018}+\dfrac{\left(x-2018\right)^2}{x^2}\ge\dfrac{2017}{2018}\)

\(S_{min}=\dfrac{2017}{2018}\) khi \(x=2018\)

13 tháng 12 2020

cm bn

16 tháng 9 2017

giúp mk vs nha , mk đăng cần rất gấp

16 tháng 9 2017

mình hk bít vít

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

1A = x^2 + 3x + 3
A= x^2 + 2.x.1,5 + 2.25 + 0,75
A = (x+1,5)^2 +0,75
=> Min A = 0,75 khi x= 1,5

2 Đặt A=x2+5y2+2x4xy10y+14

A=(x24xy+4y2)+(2x4y)+1+y26y+9+4

A=(x2y)2+2(x2y)+1+(y3)2+4

A=(x2y+1)2+(y3)2+44>0

A>0(đpcm)

kick nha mình cần điểm hỏi đáp :((

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

3 tháng 9 2016

1/

a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm

b/ Đề sai , giả sử với a = 3

c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)

d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)

 

3 tháng 9 2016

2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

BT đạt giá trị nhỏ nhất bằng 2 tại x = 3

b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

BT đạt giá trị lớn nhất bằng -2 tại x = 3

12 tháng 4 2017

Bài 1: \(A=x^2-2x+3\)

\(=x^2-2x+1+2\)

\(=\left(x-1\right)^2+2\ge2\forall x\)

Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

Bài 2:

\(2x^2+4x+11=2x^2+4x+2+9\)

\(=2\left(x^2+2x+1\right)+9\)

\(=2\left(x+1\right)^2+9\ge9>0\forall x\)

23 tháng 11 2017

A=x2-xy +y2-2x -2y  suy ra 2. A = 2 x2-2xy +2y2-4x -4y = (x2-2xy +y2 ) + (x2-4x + 4) +( y2-4y+ 4) -8

2A = (x -y)2 + (x -2)2  + (y -2)2 -8 \(\ge\)-8  nên A \(\ge\)-4 

dấu "=" xảy ra khi và chỉ khi x -y =0; x -2 =0 và y -2 = 0 suy ra x =y =2

Vậy GTNN của A là -4 tại x =y = 2

23 tháng 11 2017

4A = 4x^2-4xy+4y^4-8x-8y

     = [ (4x^2-4xy+y^2)-2.(2x-y).2+4 ] + (3y^2-4y+4/3) - 16/3

     = (2x-y-2)^2 + 3.(y-2/3)^2 - 16/3 >= -16/3 => A >= -4/3

Dấu "=" xảy ra <=> 2x-y-2=0 và y-2/3 = 0

<=> x=4/3 và y=2/3

Vậy Min của A = -4/3  <=> x = 4/3 và y = 2/3

k mk nha