\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):

\(\left|x-1\right|+\left|x-100\right|\ge\left|\left(x-1\right)+\left(100-x\right)\right|=99\)

(Dấu "=" khi \(1\le x\le100\))

\(\left|x-2\right|+\left|x-99\right|\ge\left|\left(x-2\right)+\left(99-x\right)\right|=97\)

(Dấu "=" khi \(2\le x\le99\))

\(\left|x-3\right|+\left|x-98\right|\ge\left|\left(x-3\right)+\left(98-x\right)\right|=95\)

(Dấu "=" khi \(3\le x\le98\))

...

\(\left|x-49\right|+\left|x-50\right|\ge\left|\left(x-49\right)+\left(50-x\right)\right|=1\)

(Dấu "="\(\Leftrightarrow49\le x\le50\))

Vậy \(B\ge99+97+95+...+1=\frac{\left(99+1\right)\left[\left(99-1\right):2+1\right]}{2}\)

\(=2500\)

Dấu "=" khi \(49\le x\le50\)

26 tháng 10 2016

a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

\(=\left|x-1\right|+\left|2-x\right|+2016\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)

Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)

b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)

Ta lại có: \(\left|x-2\right|\ge0\) (2)

Từ (1)(2) suy ra: \(B\ge2\)

Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)

24 tháng 2 2017

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

24 tháng 2 2017

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.

21 tháng 8 2018

ta có : \(C=\left|x-1\right|+\left|2-x\right|+\left|x-3\right|+\left|4-x\right|+...+\left|x-99\right|+\left|100-x\right|\)

\(\ge\left|x-1+2-x+x-3+4-x+...+x-99+100-x\right|=\left|50\right|=50\)

\(\Rightarrow C_{min}=50\)

dấu bằng xảy ra khi : \(x-1;x-2;x-3;...;x-100>0\Leftrightarrow x>100\)

vậy GTNN của \(C\)\(50\) khi \(x>100\)

21 tháng 8 2018

50

11 tháng 3 2020

a) Ta có \(\hept{\begin{cases}\left|x-1\right|\ge0\\3\left|x-2\right|>0\end{cases}=>\left|x-1\right|+3\left|x-2\right|\ge0}\)

dấu "=" xảy ra khi and chỉ khi

=>\(\hept{\begin{cases}x-1=0\\3\left|x-2\right|=0\end{cases}=>\hept{\begin{cases}x=1\\x=2\end{cases}}}\)

zậy minA=0 khi and chỉ khi \(\hept{\begin{cases}x=1\\x=2\end{cases}}\)

chắc sai @@

11 tháng 3 2020

a) ta có

Ix-1I >= với mọi x thuộc Z

3Ix-2I >= 0 với mọi x thuộc Z

=> Ix-1I+3Ix-2I >= 0 hay A >=0  

Dấu "=" <=> \(\hept{\begin{cases}|x-1|=0\\3|x-2|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy không có giá trị x để Min A=0

b) Làm tương tự

9 tháng 7 2019

\(K=|x-1|+|x-2|+|x-3|\)

\(=\left(|x-1|+|x-3|\right)+|x-2|\)

\(=\left(|x-1|+|3-x|\right)+|x-2|\)

Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)

Hay \(A\ge2\left(1\right)\)

Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)

\(\Leftrightarrow1\le x\le3\)

Đặt \(B=|x-2|\)

Ta có: \(|x-2|\ge0;\forall x\)

Hay \(B\ge0;\forall x\left(2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)

                       \(\Leftrightarrow x=2\)

Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)

                   Hay \(K\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)

Vậy MIN K=2 \(\Leftrightarrow x=2\)

9 tháng 7 2019

Kiệt ơi phần M là x+28 hay là x-28 đấy