Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):
\(\left|x-1\right|+\left|x-100\right|\ge\left|\left(x-1\right)+\left(100-x\right)\right|=99\)
(Dấu "=" khi \(1\le x\le100\))
\(\left|x-2\right|+\left|x-99\right|\ge\left|\left(x-2\right)+\left(99-x\right)\right|=97\)
(Dấu "=" khi \(2\le x\le99\))
\(\left|x-3\right|+\left|x-98\right|\ge\left|\left(x-3\right)+\left(98-x\right)\right|=95\)
(Dấu "=" khi \(3\le x\le98\))
...
\(\left|x-49\right|+\left|x-50\right|\ge\left|\left(x-49\right)+\left(50-x\right)\right|=1\)
(Dấu "="\(\Leftrightarrow49\le x\le50\))
Vậy \(B\ge99+97+95+...+1=\frac{\left(99+1\right)\left[\left(99-1\right):2+1\right]}{2}\)
\(=2500\)
Dấu "=" khi \(49\le x\le50\)
a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)
\(=\left|x-1\right|+\left|2-x\right|+2016\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)
Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)
b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)
Ta lại có: \(\left|x-2\right|\ge0\) (2)
Từ (1)(2) suy ra: \(B\ge2\)
Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)
a) Ta có:
\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)
hay \(A\ge\left|1\right|+2016=1+2016=2017\)
=> \(A\ge2017\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.
b) Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)
hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)
\(\Rightarrow B\ge\left|x\right|\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)
Để B nhỏ nhất
=> |x| phải nhỏ nhất (2)
Từ (1) và (2)
=> x=1
khi đó:
B=|x|=|1|=1
Vậy với x=1 thì B đạt GTNN và B=1.
ta có : \(C=\left|x-1\right|+\left|2-x\right|+\left|x-3\right|+\left|4-x\right|+...+\left|x-99\right|+\left|100-x\right|\)
\(\ge\left|x-1+2-x+x-3+4-x+...+x-99+100-x\right|=\left|50\right|=50\)
\(\Rightarrow C_{min}=50\)
dấu bằng xảy ra khi : \(x-1;x-2;x-3;...;x-100>0\Leftrightarrow x>100\)
vậy GTNN của \(C\) là \(50\) khi \(x>100\)
a) Ta có \(\hept{\begin{cases}\left|x-1\right|\ge0\\3\left|x-2\right|>0\end{cases}=>\left|x-1\right|+3\left|x-2\right|\ge0}\)
dấu "=" xảy ra khi and chỉ khi
=>\(\hept{\begin{cases}x-1=0\\3\left|x-2\right|=0\end{cases}=>\hept{\begin{cases}x=1\\x=2\end{cases}}}\)
zậy minA=0 khi and chỉ khi \(\hept{\begin{cases}x=1\\x=2\end{cases}}\)
chắc sai @@
a) ta có
Ix-1I >= với mọi x thuộc Z
3Ix-2I >= 0 với mọi x thuộc Z
=> Ix-1I+3Ix-2I >= 0 hay A >=0
Dấu "=" <=> \(\hept{\begin{cases}|x-1|=0\\3|x-2|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy không có giá trị x để Min A=0
b) Làm tương tự
\(K=|x-1|+|x-2|+|x-3|\)
\(=\left(|x-1|+|x-3|\right)+|x-2|\)
\(=\left(|x-1|+|3-x|\right)+|x-2|\)
Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)
Hay \(A\ge2\left(1\right)\)
Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)
\(\Leftrightarrow1\le x\le3\)
Đặt \(B=|x-2|\)
Ta có: \(|x-2|\ge0;\forall x\)
Hay \(B\ge0;\forall x\left(2\right)\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)
Hay \(K\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)
Vậy MIN K=2 \(\Leftrightarrow x=2\)