Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2+2y^2-2xy-4y+2017\)
\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)
\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)
Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)
Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này
A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]
(X-Y+1)\(^2\)+(Y-4)\(^2\)
\(\Rightarrow=0\)
=>Amin=0 khi y=4;x=3
Đặt \(KK=x^2-2xy+2y^2+2x-10y+17\)
\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)
\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)
\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Mà \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
\(\Rightarrow KK\ge0\)
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)
a,A=3x^2y^4+5x^3+xy-3x^2y^4
A=5x3 +xy
=> bậc của A là 3
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
=> bậc của B là 8
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
C = 5x4y2 -7x3y2 (-2xy2) - 5x4y2 +x3 -14x4y4
C = 5x4y2 + 14x4y4 -5x4y2 +x3 -14x4y4
C = x3
=> Bậc của C là 3
2) a) \(P=3x^2+y^2-8x+2xy+16\)
\(P=\left(x^2+2xy+y^2\right)+2\left(x^2-4x+4\right)+8\)
\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\forall x;y\)
\(\Rightarrow\) GTNN của P là 8 khi \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\) vậy GTNN của P là 8 khi \(x=2;y=-2\)
b) \(Q=x^2+2y^2-2xy-4y+2017\)
\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)
\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\forall x;y\)
\(\Rightarrow\) GTNN của Q là 2013 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\) vậy GTNN của Q là 2013 khi \(x=y=2\)
c) \(M=2x^2+y^2-2xy-2x+2016\)
\(M=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2015\)
\(M=\left(x-y\right)^2+\left(x-1\right)^2+2015\ge2015\forall x;y\)
\(\Rightarrow\) GTNN của M là 2015 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) vậy GTNN của M là 2015 khi \(x=y=1\)
\(2x^2+2y^2-2xy-6y+21\)
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12y+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)
\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
Vậy GTNN là 30
Cho mk sủa lại tí :
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15
Ta có \(C=x^2+2y^2-2xy-4y+5=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+1\)
Do \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\Rightarrow C\ge1\)
Vậy GTNN của C là 1 khi \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)