K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

\(A=x^2-4x+4+y^2-8y+16-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

12 tháng 7 2017

\(x^2-4x+y^2-8y+6\)

\(=x^2-4x+4+y^2-8y+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\)

Thấy: \(\left(x-2\right)^2+\left(y-4\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Xảy ra khi x=2;y=4

10 tháng 8 2017

\(A=x^2-4x+y^2-8y+6\\ =x^2-4x+4+y^2-8y+16-14\\ =\left(x-2\right)^2+\left(y-4\right)^2-14\\ \left(x-2\right)^2\ge0\forall x\\ \left(y-4\right)^2\ge0\forall y\\ \Rightarrow\left(x-2\right)^2+\left(y-4\right)^2\ge0\forall x,y\\ \Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x,y\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\y-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Vậy \(Min_A=-14\) khi \(x=2;y=4\)

17 tháng 7 2018

a,<=>   x2-4x+22+y2-8y+42-14

<=> (x2-2x2+22)+(y2-2x4+42)-14

<=> (x-2)2+(y-4)2-14 

Vì (x-2)2+(y-4)2>= 0

=> F >= -14 => MIn F = -14 <=> x=2, y=4

b, <=> (x2+52+(2y)2-4xy+10x-20y) +(y2-2y+1)+2

<=> (x+5-2y )2+(y-1)2+2 

Vì (x+5-2y) 2+(y-1)2 >= 0

=> G >= 2 => Min =2 <=> y=1, x= -3

17 tháng 7 2018

\(F=x^2-4x+y^2-8y+6\)

\(F=\left(x^2-2.2x+2^2\right)+\left(y^2-2.4.y+4^2\right)-14\)

\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y-4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x\)

\(F=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy \(F_{min}=-14\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)

a: \(A=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)

Dấu '=' xảy ra khi x=1 và y=-2

b: \(B=x^2-4x+4+y^2-8y+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)

Dấu '=' xảy ra khi x=2 và y=4

21 tháng 6 2016

\(a,=\left(x-1\right)^2+\left(y+2\right)^2+3\)

\(vì\left(x-1\right)^2+\left(y+2\right)^2\ge0\Rightarrow\)NÊN BIỂU THỨC ĐẠT GTNN LÀ \(3\)

\(b,=\left(x-2\right)^2+\left(y-4\right)^2-14\)

BIỂU THỨC ĐẠT GTNN LÀ \(-14\)

1 tháng 11 2017

D = (x-1).(x+2).(x+3).(x+6)

= (x2 + 5x - 6).(x2 + 5x + 6)

= (x2 + 5x)2 + 6x.(x2+5x)-6(x2 + 5x) - 36

= (x2 + 5x)2 - 36 \(\ge\) -36 với mọi x

Vậy D có GTNN = - 36 khi x2 + 5x = 0

hay x = 0; x = 5

A = x2 - 2x + y2 + 4y + 8

= (x2 - 2x + 1) + (y2 + 2.2y + 4) + 3

= (x-1)2 + (y+2)2 + 3 \(\ge\) 3 với mọi x,y

Vậy A có GTNN = 3

C = x2 - 4x + y2 - 8y + 6

= (x2 - 4x + 4) + (y2 - 8y + 16) - 12

= (x-2)2 + (y-4)2 - 12 \(\ge\) -12 với mọi x;y

Vậy C có GTNN = -12

B = 2x2 - 4x + 10

= x2 + (x2 - 4x + 4) + 6

= x2 + (x-2)2 + 6 \(\ge\) 6 với mọi x

Vậy B có GTNN = 6

30 tháng 8 2021

1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)

\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)

2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)

\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)

4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) 

\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

30 tháng 8 2021

3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)

\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)