Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \( \left|x-2015\right|=\left|2015-x\right|\)
Ta lại có: \(\left|2015-x\right|+\left|x-2017\right|\ge\left|2015-x+x-2017\right|=2\)
\(\Rightarrow P\ge\left|2016-x\right|+2\)
Vì \(\left|2016-x\right|\ge0\)\(\Rightarrow\left|2016-x\right|+2\ge2\)
\(\Rightarrow P\ge2\)
Khi đó: \(\left|2016-x\right|=0\)\(\Rightarrow2016-x=0\)\(\Rightarrow x=2016\)
Vậy \(P_{min}=2\)\(\Leftrightarrow\)\(x=2016\)
Giải:
Ta có: \(P=\left|x-2015\right|+\left|2016-x\right|+\left|x-2017\right|\)
Vì \(\left\{{}\begin{matrix}\left|x-2015\right|\ge0\\\left|2016-x\right|\ge2016-x\\\left|x-2017\right|\ge x-2017\end{matrix}\right.\)
Nên \(P\ge2016-x+x-2017\)
\(P\ge-1\)
Vậy GTNN của P là -1
\(P=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left(\left|x-2015\right|+\left|x-2017\right|\right)+\left|x-2016\right|\)
\(=\left(\left|x-2015\right|+\left|2017-x\right|\right)+\left|x-2016\right|\)
\(=\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+ \left|x-2016\right|\)
Vì \(\left|x-2016\right|\ge0\left(\forall x\in Z\right)\Rightarrow2+\left|x-2016\right|\ge2\)
Dấu "=" xảy ra khi (x-2015).(2017-x) >= 0 và x - 2016 = 0
<=> x = 2016
Vậy Pmin = 2 khi x = 2016
mk ko viết lại đề
P= |x-2015|+|x-2016|+|2017-x|
\(\ge\)\(\left|x-2105+2017-x\right|+\left|x-2016\right|\)
=\(\left|2\right|+\left|x-2016\right|=2+\left|x-2016\right|\)
Do |x-2016|\(\ge0\)=> \(2+\left|x-2016\right|\ge2\)
dấu "=" xảy ra khi (x-2015).(2017-x)\(\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le2017\end{cases}\Rightarrow2015\le x\le2017}\)
Vậy GTNN của P=2 \(\Leftrightarrow2015\le x\le2017\)
Vì \(\left|x-7\right|\ge0;\left|x-2016\right|\ge0;\left|x-2017\right|\ge0\)
Suy ra:\(\left|x-7\right|+\left|x+2016\right|+\left|x-2017\right|\ge0\)
Dấu = xảy ra khi x-7=0;x=7
x+2016=0;x=-2016
x-2017=0;x=2017
Vậy Min A=0 khi x=7;-2016;2017
A = |x-7|+|x-2016|+|x-2017|
= |x-7|+|x-2016|+|2017-x|
≥ |x-7+2017-x|+|x-2016| = 2017+|x-2016|≥2017
để A nhỏ nhất => A = 2017
=> |x - 2016| = 0 => x = 2016
B=|x-2015|+|x-2016| <=>|x-2015|+|2016-x| > |x-2015+2016-x|=|1|=1
vây Bmin=1
Ta có : A = l2014 - x l + l 2015 - x l + l2016 - x l
=> A = l2014 - x l + l2015 - x l + l x-2016 l (Với x>2016 )
=> A >= l 2014 -x + x- 2016 l + l2015 -x l
=> A >= l2014-2016l + l2015-x l
=> A >= l -2 l + l2015 - x l
=> A >= 2 + l2015 - x l
Vì l2015 - x l >=0 Nên <=> A >= 2 +0
=> A >=2
Vậy Min A =2 <=> l2015 - x l = 0
=> 2015 - x= 0 => x= 2015-0 =2015
Vậy tại x= 2015 thì GTNN của A =2
Buề