Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)
\(=\left|x-1\right|+\left|2-x\right|+2016\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)
Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)
b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)
Ta lại có: \(\left|x-2\right|\ge0\) (2)
Từ (1)(2) suy ra: \(B\ge2\)
Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)
a) Ta có:
\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)
hay \(A\ge\left|1\right|+2016=1+2016=2017\)
=> \(A\ge2017\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.
b) Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)
hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)
\(\Rightarrow B\ge\left|x\right|\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)
Để B nhỏ nhất
=> |x| phải nhỏ nhất (2)
Từ (1) và (2)
=> x=1
khi đó:
B=|x|=|1|=1
Vậy với x=1 thì B đạt GTNN và B=1.
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
a) Ta có ;
|x - 23| + |x - 10| <=> |23 - x| + |x - 10|
|23 - x| + |x - 10| \(\ge\left|23-x+x-10\right|=13\)
=> Min = 13
Mấy câu kia chuyển đổi tý , xong là áp dụng BĐT |a| + |b| \(\ge\) |a + b| là được
a) Ta có :
\(\left|x-23\right|\ge0;\left|x-10\right|\ge0\)
\(\Rightarrow\left|x-23\right|+\left|x-10\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x-23=0\) và \(x-10=0\)
=> x = 23 và x= 10
Vậy Biểu thức \(\left|x-23\right|+\left|x-10\right|\) đạt GTNN ki x = 23 và x=10
b) ,c) Tương tự nha bạn Bảo Trâm
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
\(A=x\left(x+2\right)+2\left(x-\frac{2}{3}\right)\)
\(A=x\left(x+2\right)+2\left(x+2\right)-2.2-2.\frac{2}{3}\)
\(A=\left(x+2\right)^2-4-\frac{4}{3}\)
\(A=\left(x+2\right)^2-\left(4+\frac{4}{3}\right)=\left(x+2\right)^2-\frac{16}{3}\ge-\frac{16}{3}\forall x\)
Dấu "=" xảy ra khi (x + 2)2 = 0
=> x + 2 = 0
=> x = -2
Vậy GTNN của A là \(-\frac{16}{3}\) khi x = -2
\(A=|x-1|+|x-2|+|x-3|=\left(|x-1|+|3-x|\right)+|x-2|\) \(\ge|x-1+3-x|+|x-2|\)
\(A\ge2+|x-2|\)
Vì \(|x-2|\ge0\)với \(\forall\)x
\(\Rightarrow A\ge2+0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\left(1\right)\\|x-2|=0\Rightarrow x=2\left(2\right)\end{cases}}\)
Giải (1) ta có :
\(\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\3\ge x\end{cases}}\Leftrightarrow1\le x\le3\Leftrightarrow x\in\left\{1;2;3\right\}\left(3\right)\)
\(\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\3\le x\end{cases}}\)( không có giá trị thỏa mãn )
Từ (2) và (3) => x = 2
Vậy MinA = 2 khi x = 2
GTNN A=3