K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

\(A=|x-1|+|x-2|+|x-3|=\left(|x-1|+|3-x|\right)+|x-2|\) \(\ge|x-1+3-x|+|x-2|\)

\(A\ge2+|x-2|\)

Vì \(|x-2|\ge0\)với \(\forall\)x

\(\Rightarrow A\ge2+0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\left(1\right)\\|x-2|=0\Rightarrow x=2\left(2\right)\end{cases}}\)

Giải (1) ta có :

\(\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\3\ge x\end{cases}}\Leftrightarrow1\le x\le3\Leftrightarrow x\in\left\{1;2;3\right\}\left(3\right)\)

\(\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\3\le x\end{cases}}\)( không có giá trị thỏa mãn )

Từ (2) và (3) => x = 2

Vậy Min= 2 khi x = 2

28 tháng 4 2018

GTNN A=3

21 tháng 11 2023

loading...  loading...  

7 tháng 1 2023

Ta có tính chất : 

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)

​​\(\rightarrow A\ge\left|4x-8\right|\)

Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :

\(\rightarrow A\ge0\forall x\in R\)

Dấu "= " xảy ra khi : 

\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\) 

                     \(\Leftrightarrow x=2\)

Vậy \(A_{min}=0\Leftrightarrow x=2\)

26 tháng 10 2016

a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

\(=\left|x-1\right|+\left|2-x\right|+2016\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)

Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)

b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)

Ta lại có: \(\left|x-2\right|\ge0\) (2)

Từ (1)(2) suy ra: \(B\ge2\)

Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)

24 tháng 2 2017

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

24 tháng 2 2017

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

1 tháng 12 2016

\(A=x\left(x+2\right)+2\left(x-\frac{2}{3}\right)\)

\(A=x\left(x+2\right)+2\left(x+2\right)-2.2-2.\frac{2}{3}\)

\(A=\left(x+2\right)^2-4-\frac{4}{3}\)

\(A=\left(x+2\right)^2-\left(4+\frac{4}{3}\right)=\left(x+2\right)^2-\frac{16}{3}\ge-\frac{16}{3}\forall x\)

Dấu "=" xảy ra khi (x + 2)2 = 0

=> x + 2 = 0

=> x = -2

Vậy GTNN của A là \(-\frac{16}{3}\) khi x = -2

NV
4 tháng 4 2021

\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)

\(A=\left|2021-x\right|+\left|2020-x\right|\)

\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)

\(A_{min}=1\) khi \(2020\le x\le2021\)

\(A=x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)

\(=x^2+2x+2x-3\)

\(=x^2+4x-3\)

\(=x^2+4x+4-7\)

\(=\left(x+2\right)^2-7\ge-7\)

Dấu ' = ' \(\Leftrightarrow x+2=0\Rightarrow x=-2\)

1 tháng 12 2016

\(A=x^2+2x+2x-3=x^2+4x-3.\)

\(A=x^2+4x+4-4-3=\left(x+2\right)^2-7\ge-7\)