\(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

14 tháng 3 2018

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

7 tháng 11 2019

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

7 tháng 11 2019

Ta có:

|x − 2015| + |x − 2016| + |x − 2017|

= |x − 2016| + |x − 2015| + |x - 2017|

= |x − 2016|+(| x− 2015| + |x − 2017|)

∗)∗) Áp dụng BĐT |a| + |b| ≥ |a + b|, ta có:

|x − 2015|+|x − 2017| = |x − 2015|+|2017 − x|

≥ |x − 2015 + 2017 − x| = |2| = 2

∗) Dễ thấy: |x − 2016| ≥ 0 ∀ x

⇔|x − 2015| + |x − 2016| + |x − 2017|

Đẳng thức xảy ra ⇔x−2015≥0

x−2016=0

x−2017≤0 ⇔x≥2015 (Loại)

x=2016 (TM)

x≤2017 (Loại)

Vậy x=2016

30 tháng 9 2017

\(A=\left|x-1004\right|-\left|x+1003\right|\)

Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)

Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).

30 tháng 9 2017

- Câu B dùng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) làm tương tự nhé bạn!

6 tháng 6 2017

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)

Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất

Ta có: \(\left|x-2016\right|\ge0\)

\(\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)

Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)

Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016

6 tháng 6 2017

Ta có :

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)

\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)

<=> |x - 2016| = 0

<=> x = 2016

28 tháng 3 2018

ko ai biết làm à

24 tháng 1 2017

Đặt bẫy hả

10 tháng 8 2016

ta thấy trị tuyệt đối của x-2016 lớn hơn hoặc bằng 0 với mọi x. Vậy phân thức nhỏ nhất bằng 2017/2018 

27 tháng 2 2020

Sao chép