K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

Đặt \(P=\dfrac{2x^2+x}{\left(x+1\right)^2}\Rightarrow P+\dfrac{1}{4}=\dfrac{9x^2+6x+1}{4\left(x+1\right)^2}=\dfrac{\left(3x+1\right)^2}{4\left(x+1\right)^2}\ge0\).

Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{3}\).

Vậy..

31 tháng 1 2022

là \(4x+\dfrac{1}{x^2}+2x+2\)  hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0

31 tháng 1 2022

cái phía sau nha bạn ơi 

5 tháng 8 2018

xin ban tk cho mk

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

6 tháng 7 2023

 Bài này chỉ tìm được GTLN thôi nhé bạn.

 Ta thấy \(A=-\dfrac{1}{3}x^2+2x\) 

\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)

\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)

\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)

 Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).

30 tháng 12 2018

\(Y=\frac{x^2+x+1}{x^2+2x+2}=1-\frac{x+1}{x^2+2x+2}.Y_{min}\Leftrightarrow\frac{x+1}{x^2+2x+2}.Dat:GTLN\)

\(1-\frac{x+1}{x^2+2x+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi:

x=0

30 tháng 12 2018

Giải thử bằng Delta

26 tháng 9 2020

\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)

\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)

\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)

Dấu '' ='' xảy ra khi và chỉ khi  x=1

=> Min A =2/3 khi x=1