K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Ta có : \(A=\frac{2010x+2680}{x^2+1}\)

\(=\frac{-335x^2-335+335x^2+2010x+3015}{x^2+1}\)

\(=-335+\frac{335\left(x+3\right)^2}{x^2+1}\ge-335\)

Dấu : \("="\)xảy ra khi và chỉ khi :

\(\frac{335\left(x+3\right)^2}{x^2+1}=0\)

\(\Leftrightarrow335\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)^2=0\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy GTNN của \(A\)là : \(-335\Leftrightarrow x=-3\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

30 tháng 3 2018

Ta có : 

\(A=\left|x-2\right|+\left|x+\frac{1}{2}\right|=\left|x-2\right|+\left|x-\frac{-1}{2}\right|=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\)

Áp dụng bất đẳng thức giá trị tuyệt đối ta có : 

\(A=\left|x-2\right|+\left|\frac{-1}{2}-x\right|\ge\left|x-2+\frac{-1}{2}-x\right|=\left|-2-\frac{1}{2}\right|=\left|\frac{-3}{2}\right|=\frac{3}{2}\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(\frac{-1}{2}-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-2\ge0\\\frac{-1}{2}-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le\frac{-1}{2}\end{cases}}}\)

\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-2\le0\\\frac{-1}{2}-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge\frac{-1}{2}\end{cases}}}\)

\(\Rightarrow\)\(\frac{-1}{2}\le x\le2\)

Vậy \(A_{min}=\frac{3}{2}\) khi \(\frac{-1}{2}\le x\le2\)

Chúc bạn học tốt ~ 

16 tháng 1 2017

Câu hỏi của thanh tam tran - Toán lớp 7 - Học toán với OnlineMath

28 tháng 5 2017

\(x+y=1\Leftrightarrow x^2+2xy+y^2=1\)

mà \(x^2+y^2\ge2xy\Rightarrow x^2-2xy+y^2\ge0\)cộng vế với vế ta được

\(x^2+y^2\ge\frac{1}{2}\)

\(A=\frac{1}{X^2+y^2}+\frac{1}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{0,5}=6\)

\(A_{min}=6\)dấu = khi x=y= 1/2

28 tháng 4 2017

Ta có:

\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\frac{\left(a+b\right)^2}{1}=\left(a+b\right)^2\)

Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\x+y=1\end{cases}}\Leftrightarrow...\) (tự tìm nha! Mình đang bận)

Vậy...

7 tháng 4 2018

tại sao 

\(\frac{a^2}{x^2}\)+\(\frac{b^2}{y^2}\)\(\ge\)\(\frac{\left(a+b\right)^2}{x+y}\)

15 tháng 9 2017

\(\frac{13}{12}\)

khi x=0

17 tháng 9 2017

Do \(Ix+\frac{1}{2}I\ge0;Ix+\frac{1}{3}I\ge0;Ix+\frac{1}{4}I\)\(\ge0\)vs mọi x 

Khi đó để A nhỏ nhất thì x + 1/2 = 0; x + 1/3 = 0 hoặc x + 1/4 = 0

=> x= - 1/2; x= -1/3 hoặc x=- 1/4 

Thay các giá trị x vào A, ta đc ( cái này bn tự thay)

Tại x=-1/2, GTBT A = -5/12

Tại x = -1/3. GTBT A = 1/12

Tại x= -1/4, GTBT A = 1/3

Ta có: -5/12 < 1/12<1/3 

=> GTNN của A là -5/12 tại x=  -1/2 

Mik ko chắc là đúng đâu

Thay 2010 = x + 1 vào P ( x ),ta có :

\(^{x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1}\)

= x10 - x10 - x9 + x9 + x8 - x8 - x7 + ... + x3 + x2 - x2 + x - 1

= x + 1

= 2009 + 1

= 2010
 

17 tháng 5 2017

Thay 2010 = x+ 1 vào P( x) ,có :

\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1\)

\(x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2+x-1\) 

= x+1 

= 2009 + 1

= 2010