Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM được BĐT : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)\(\Rightarrow\frac{yz+xy+xz}{xyz}\ge9\)
\(\Rightarrow xy+yz+xz-9xyz\ge0\)
\(\Rightarrow A\ge-3xyz\ge3.\left[-\left(\frac{x+y+z}{3}\right)^3\right]=3.\left(-\frac{1}{27}\right)=\frac{-1}{9}\)
Vậy GTNN của A là \(\frac{-1}{9}\)khi \(x=y=z=\frac{1}{3}\)
Áp dụng BĐT cosi ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\) => \(xyz\le\frac{1}{27}\)
\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge9xyz\)(do \(xyz\le\frac{1}{27}\))
=> \(A\ge9xyz-12xyz=-3xyz\ge-\frac{3}{27}=-\frac{1}{9}\)
MinA=-1/9 khi x=y=z=1/3
Dat \(\left(a,b,c\right)=\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\left(a,b,c>0,abc=1\right)\)
Ta co \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{3}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\left(1\right)\)
BDT phu \(1+\frac{3}{ab+bc+ca}\ge\frac{6}{a+b+c}\left(2\right)\)
Do (1) nen (2) tuong duong voi
\(1+\frac{9}{\left(a+b+c\right)^2}\ge\frac{6}{a+b+c}\Leftrightarrow\left(1-\frac{3}{a+b+c}\right)^2\ge0\left(dung\right)\)
Suy ra (2) duoc chung minh
Do \(abc=1\Rightarrow\hept{\begin{cases}ab=\frac{1}{xy}=\frac{xyz}{xy}=z\\bc=x\\ca=y\end{cases}}\)
nen (2) tuong duong \(1+\frac{3}{x+y+z}\ge\frac{6}{xy+yz+zx}\)
=> \(\frac{1}{x+y+z}\ge\frac{1}{3}\left(\frac{6}{x+y+z}-1\right)=\frac{2}{x+y+z}-\frac{1}{3}\)
Suy ra \(P\ge\frac{2}{x+y+z}-\frac{1}{3}-\frac{2}{x+y+z}=-\frac{1}{3}\)
Dau = xay ra khi x=y=z=1
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Áp dụng schwarz , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=9\Rightarrow \frac{xy+yz+zx}{xyz}\geq 9\Rightarrow xy+yz+zx\geq 9xyz\)
\(\Rightarrow A\geq 9xyz-12xyz=-3xyz\)
Theo bất đẳng thức Cauchy , ta có :
\(\sqrt[3]{xyz}\leq \frac{x+y+z}{3}=\frac{1}{3}\Rightarrow xyz\leq \frac{1}{27}\Rightarrow -3xyz\geq \frac{1}{9}\)
Vậy \(Min A=-\frac{1}{9}\Leftrightarrow x=y=z=\frac{1}{3}\)