K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

ĐKXĐ : \(x\ge2\)

Ta có : \(A=\dfrac{x+3\sqrt{x-2}}{x+4\sqrt{x-2}+1}\) . Đặt t = \(\sqrt{x-2}\ge0\) \(\Rightarrow x=t^2+2\)

Khi đó : \(A=\dfrac{t^2+2+3t}{t^2+4t+3}=\dfrac{\left(t+2\right)\left(t+1\right)}{\left(t+3\right)\left(t+1\right)}=\dfrac{t+2}{t+3}=1-\dfrac{1}{t+3}\ge1-\dfrac{1}{3}=\dfrac{2}{3}\)

" = " \(\Leftrightarrow t=0\Leftrightarrow x=2\)

Vậy ... 

8 tháng 4 2022

em cảm ơn nhiều ạ

30 tháng 9 2021

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

28 tháng 2 2022

Bo thi:>

undefined

28 tháng 2 2022

+ đk x > 0 , x khác 1

9 tháng 3 2022

Mọi người ơi, giúp em với ạ!

 

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

NV
20 tháng 8 2021

Biểu thức này ko tồn tại cả min lẫn max

20 tháng 8 2021

thầy ơi em bị nhầm phải là tìm GTNN của \(\dfrac{1}{M}\)

12 tháng 7 2018

\(f\left(x\right)=\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}=\sqrt{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}3-x=0\\2+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

Vậy GTNN của \(f\left(x\right)=\sqrt{5}\) khi và chỉ khi x = 3; x = -2

13 tháng 7 2018

bạn ơi ở bước:

f(x)=\(\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}\)

làm sao bạn ra đc bất đẳng thức như vậy ạ

16 tháng 2 2022

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)