K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

\(A=\frac{x^2-x+1}{x^2-x+1}=1\)

Làm sao tìm được max, min ?

Bạn xem lại đề nhé

13 tháng 4 2019

Sửa đề là: Tìm min-max của biểu thức \(A=\frac{x^2+x+1}{x^2-x+1}\Leftrightarrow\left(A-1\right)x^2-\left(A+1\right)x+\left(A-1\right)=0\) (1)

Xét A = 1 thì x = 0

Xét A khác 1 thì (1) là pt bậc 2.(1) có nghiệm tức là:

\(\Delta=\left(A+1\right)^2-4\left(A-1\right)^2\ge0\)

\(\Leftrightarrow-3A^2+10A-3\ge0\Leftrightarrow\frac{1}{3}\le A\le3\)

Đúng không ta?

16 tháng 10 2019

TXĐ:R

Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)

<=> \(Ax^2-Ax+A-x^2-1=0\)

<=> \(\left(A-1\right)x^2-Ax+A-1=0\)

TH1: A =1 => x =0

TH2: A khác 1

phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)

<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)

A min =2/3 thay vào => x

A max =2 thay vào tìm x .

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

11 tháng 1 2017

Nhận xét : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\) 

\(A=\frac{x+1}{x^2+x+1}\)  \(\Leftrightarrow A\left(x^2+x+1\right)=x+1\Leftrightarrow Ax^2+x\left(A-1\right)+\left(A-1\right)=0\) (*)

Ta coi PT trên là PT bậc hai ẩn x.

Xét biệt thức \(\Delta=\left(A-1\right)^2-4A\left(A-1\right)=-3A^2+2A+1=\left(1-A\right)\left(3A+1\right)\)

Để tồn tại GTLN và GTNN tức là tồn tại giá trị của x thỏa mãn PT (*) có nghiệm, tức \(\Delta\ge0\)

Hay \(-\frac{1}{3}\le A\le1\)

Từ đó tìm được min A = -1/3 và max A = 1 (bạn tự tìm x)

11 tháng 1 2017

\(A=\frac{2y+2}{y^2+3}\Leftrightarrow\)

\(A-1=\frac{\left(2y+2\right)-y^2-3}{y^2+3}=\frac{-\left(y-1\right)^2}{y^2+3}\le0\Rightarrow A\le1\) đẳng thức khi y=1=> x=0

ay^2+3a-2y-2

1-a(3a-2)=3a^2-2a-1<0

a=1

a=-1/3

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

24 tháng 7 2020

biểu thức B nhận giá trị b khi phương trình sau có nghiệm \(b=\frac{x+2y+1}{x^2+y^2+7}\)

\(\Leftrightarrow bx^2-x+by^2-2y+7y-1=0\left(2\right)\)

trong đó x là ẩn, y là tham số và b là tham số có điều kiện

nếu b=0 => x+2y+1=0

nếu b \(\ne\)0 để (2) có nghiệm x khi 1-4b(by2-2y+7b-1) >= 0 (3)

coi (3) là bất phương trình ẩn y. bất phương trình này xảy ra với mọi giá trị của y khi 16b2+4b2(-28b2+4b+1) >=0

<=> -28b2+4b+5 >=0 \(\Leftrightarrow-\frac{5}{14}\le b\le\frac{1}{2}\)

vậy minB=-5/14 khi \(x=-\frac{7}{5};y=-\frac{14}{5}\)

maxB=1/2 khi x=1;y=2