K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

GTLN của A là 2/3

GTNN của A là số ko tìm đc hay nói là lớn hơn -1

\(x^2\)luôn cho ra kết là lớn hơn 0. Mà \(x+1< x^2\)Cứ thế cho ra số lớn hơn -1. Đơn giản vì \(x+1< x^2+x+1\)

25 tháng 11 2017

+) GTNN

Ta có :\(3A=\frac{3x+3}{x^2+x+1}=\frac{-x^2-x-1+x^2+4x+4}{x^2+x+1}=\frac{-\left(x^2+x+1\right)+\left(x+2\right)^2}{x^2+x+1}\)

\(=-1+\frac{\left(x+1\right)^2}{x^2+x+1}\ge-1\) \(\Rightarrow A\ge-\frac{1}{3}\)Đạt GTNN là \(-\frac{1}{3}\)

Đạt được khi \(\frac{\left(x+1\right)^2}{x^2+x+1}=0\Rightarrow x=-1\)

+) GTLN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\)Đạt GTLN là 1

Đạt được khi \(\frac{x^2}{x^2+x+1}=0\Rightarrow x=0\)

NV
9 tháng 4 2019

GTLN và GTNN của biểu thức này đều ko tồn tại

D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)

D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))

10 tháng 8 2020

tai sao x^2 lai = (a+1)^2 vay

NV
8 tháng 8 2020

Đặt \(\left\{{}\begin{matrix}x-1=a>0\\y-1=b>0\end{matrix}\right.\)

\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)

\(P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)

\(P_{min}=8\) khi \(a=b=1\) hay \(x=y=2\)

22 tháng 6 2016

\(A=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2+\left(3y+1-\left(\sqrt{y}+1\right)^2\right)\)

 \(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)

\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Amin= -1/2  khi  y=1/4; x=9/4

18 tháng 11 2017

ta có :  (\(\sqrt{x}\)-   2   )\(^2\)\(\ge\)0

\(\Leftrightarrow\)x  -  4\(\sqrt{x}\)+  4  \(\ge\)0

\(\Leftrightarrow\)x  -  4\(\sqrt{x}\)+  4 +   8\(\sqrt{x}\) \(\ge\)8\(\sqrt{x}\)

   \(\Leftrightarrow\)(\(\sqrt{x}\)+    2  )\(^2\)\(\ge\)8\(\sqrt{x}\)

\(\Leftrightarrow\)-(\(\sqrt{x}\)+    2  )\(^2\)\(\le\)-8\(\sqrt{x}\)

\(\Leftrightarrow\)Q  \(\le\)\(\frac{-8\sqrt{x}}{\sqrt{x}}\)=   (   -  8  )

Dấu ''   =   ''   xaye ra tại   x =  4