Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left|1,4+x\right|\ge0\Leftrightarrow-\left|1,4+x\right|\le0\Rightarrow\left|1,4+x\right|-2\le-2\Leftrightarrow A\le-2\Rightarrow MaxA=-2\Leftrightarrow x=-1,4\)
\(\left|5x-2\right|\ge0\Leftrightarrow-\left|5x-2\right|\le0;\left|3y+12\right|\ge0\Leftrightarrow-\left|3y+12\right|\le0\Rightarrow4-\left|5x-2\right|-\left|3y+12\right|\le4\Rightarrow B\le4\Rightarrow MaxB=4\)
<=> x=2/5 và y=-4
Bài 1 :A có GTLN <=> -|1,4 + x| có GTLN
=> x không tồn tại.
Bài 2 : B có GTLN <=> | 5x - 2 | - | 3y + 12 | có GTNN
<=> | 5x - 2 | - | 3y + 12 | = 0
Vậy GTLN của B = 4 - 0 = 4
\(P=1-\left|5x-2\right|-\left|3y+12\right|\)
Ta có:
\(\left\{{}\begin{matrix}\left|5x-2\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\left|5x-2\right|\le0\forall x\\-\left|3y+12\right|\le0\forall y\end{matrix}\right.\)
\(\Rightarrow1-\left|5x-2\right|-\left|3y+12\right|\le1\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}\left|5x-2\right|=0\\\left|3y+12\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy \(A_{max}=1\) khi \(x=\frac{2}{5};y=-4.\)
Chúc em học tốt!
Ta có: \(\left\{\begin{matrix}\left|5x-2\right|\ge0\\\left|3y+1\right|\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}-\left|5x-2\right|\le0\\-\left|3y+1\right|\le0\end{matrix}\right.\)
Ta có: \(C=4-\left|5x-2\right|-\left|3y+1\right|\le4+0+0=4\)
Vậy GTLN là C = 4 khi x = \(\frac{2}{5}\), y = \(\frac{-1}{3}\)
\(\)bài nào có MIN or MAX thì mk làm,mk ko làm thì có nghĩa là ko có nha
\(D=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
\(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|4x-3\right|=0\Rightarrow4x=3\Rightarrow x=\dfrac{3}{4}\\\left|5y+7,5\right|=0\Rightarrow5y=-7,5\Rightarrow y=-1,5\end{matrix}\right.\)
\(\Rightarrow MIN_D=17,5\) khi \(x=\dfrac{3}{4};y=-1,5\)
\(E=4-\left|5x-2\right|-\left|3y+12\right|\)
\(\left\{{}\begin{matrix}\left|5x-2\right|\ge0\\\left|3y+12\right|\ge0\end{matrix}\right.\)
\(\Rightarrow E=4-\left|5x-2\right|-\left|3y+12\right|\le4\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|5x-2\right|=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\\left|3y+12\right|=0\Rightarrow3y=-12\Rightarrow y=-4\end{matrix}\right.\)
\(\Rightarrow MAX_E=4\) khi \(x=\dfrac{2}{5};y=-4\)