K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022
  • Kết quả là căn 2 nhé áp dụng bất đẳng thức Bunia-cop-xki
11 tháng 1 2022

(ax+by)^2<=(x^2+y^2)(a^2+b^2) Bài này là với x,y=1; a,b là 2 cái căn.

Chứng minh bằng biến đổi tương đương

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

26 tháng 10 2019

a/ \(A=\frac{1}{5+2\sqrt{6-x^2}}\)

Có: \(-x^2\le0\)với mọi x

=> \(6-x^2\le6\)

=> \(0\le\sqrt{6-x^2}\le\sqrt{6}\)

=> \(5\le5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)

=> \(\frac{1}{5+2\sqrt{6}}\le\frac{1}{5+2\sqrt{6-x^2}}\le\frac{1}{5}\); với mọi x

=> \(\hept{\begin{cases}maxA=\frac{1}{5}\Leftrightarrow\sqrt{6-x^2}=0\Leftrightarrow x=\pm\sqrt{6}\\minA=\frac{1}{5+2\sqrt{6}}\Leftrightarrow\sqrt{6-x^2}=\sqrt{6}\Leftrightarrow x=0\end{cases}}\)

Vậy:...

b/ \(B=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\)

Có: \(-\left(x-1\right)^2\le0\)với mọi x

=> \(-\left(x-1\right)^2+5\le5\)

=> \(0\le\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)

=> \(0\le B\le\sqrt{5}\)với mọi x

=> \(\hept{\begin{cases}maxB=\sqrt{5}\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\\minB=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x=\pm\sqrt{5}+1\end{cases}}\)

Vậy:...

26 tháng 10 2019

a)Ta có:

\(0\le2\sqrt{6-x^2}\le2\sqrt{6}\)

\(\Leftrightarrow\frac{1}{5}\ge\frac{1}{5+2\sqrt{6-x^2}}\ge\frac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}MAX\left(A\right)=\frac{1}{5}\\MIN\left(A\right)=5-2\sqrt{6}\end{cases}}\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=0\left(MIN\right)\\x=\sqrt{6}\left(MAX\right)\end{cases}}\)

NM
23 tháng 8 2021

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

15 tháng 12 2016

mk ko bit

15 tháng 12 2016

Ta có

\(A=2x+\sqrt{4-2x^2}=\sqrt{\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2}\)

\(\le\sqrt{\left(2+1\right)\left(2x^2+4-2x^2\right)}=\sqrt{3.4}=2\sqrt{3}\)

Vậy GTLN là \(2\sqrt{3}\)đạt được khi \(\frac{2}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

a) ĐK: $x\geq 0$

\(A=2x-6\sqrt{x}-1=2(x-3\sqrt{x}+\frac{3^2}{2^2})-\frac{11}{2}\)

\(=2(\sqrt{x}-\frac{3}{2})^2-\frac{11}{2}\geq \frac{-11}{2}\)

Vậy GTNN của $A$ là $\frac{-11}{2}$. Giá trị này đạt được tại \((\sqrt{x}-\frac{3}{2})^2=0\Leftrightarrow x=\frac{9}{4}\)

b) Không đủ căn cứ để tìm min- max

c)

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{(2x-1)^2}+\sqrt{(2x-3)^2}\)

\(=|2x-1|+|2x-3|\)

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

\(E=|2x-1|+|3-2x|\geq |2x-1+3-2x|=2\)

Vậy $E_{\min}=2$. Giá trị này đạt tại $(2x-1)(3-2x)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq x\leq \frac{3}{2}$

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

d) ĐKXĐ: \(\frac{7}{2}\leq x\leq \frac{5}{2}\) (vô lý)

e)

\(A=-3x+6\sqrt{x}+3=6-3(x-2\sqrt{x}+1)=6-3(\sqrt{x}-1)^2\)

\(\leq 6\) do $(\sqrt{x}-1)^2\geq 0$ với mọi $x\geq 0$)

Vậy $A_{\max}=6$. Giá trị này xác định tại $(\sqrt{x}-1)^2=0\Leftrightarrow x=1$

f) ĐK: $x\geq 4$

\(E^2=4x-7-2\sqrt{(2x+1)(2x-8)}\)

Với mọi $x\geq 4$ thì:

\(2x+1> 2x-8\Rightarrow (2x+1)(2x-8)\geq(2x-8)^2\)

\(\Rightarrow E^2\leq 4x-7-2\sqrt{(2x-8)^2}=4x-7-2(2x-8)=9\)

$\Rightarrow E\leq 3$

Vậy $E_{\max}=3$ khi $2x-8=0\Leftrightarrow x=4$

8 tháng 6 2018

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{x-2+2\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}\sqrt{x-2}+2}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{2-x}\right)^2}\)

\(=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)