Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(2x+\sqrt{4-2x^2})^2\leq [2x^2+(4-2x^2)](2+1)\)
\(\Leftrightarrow A^2\leq 12\Rightarrow -2\sqrt{3}\leq A\leq 2\sqrt{3}\)
Vậy \(A_{\max}=2\sqrt{3}\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} 2x+\sqrt{4-2x^2}=2\sqrt{3}\\ \frac{\sqrt{2x^2}}{\sqrt{2}}=\frac{\sqrt{4-2x^2}}{1}\end{matrix}\right.\Leftrightarrow x=\frac{2}{\sqrt{3}}\)
a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)
Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)
b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)
Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)
\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)
\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)
\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)
\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)
Cộng các vế lại, ta được :
\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)
\(\Rightarrow B\le6\)
Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)
1. Áp dụng BĐT Bunhiakovski
a) \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{\left(\sqrt{x-2}.1+\sqrt{4-x}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\sqrt{x-2}=\sqrt{4-x}\) \(\Leftrightarrow\) \(x=3\)
b) \(\sqrt{6-x}+\sqrt{x+2}=\sqrt{\left(\sqrt{6-x}.1+\sqrt{x+2}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(6-x+x+2\right)}=4\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\sqrt{6-x}=\sqrt{x+2}\) \(\Leftrightarrow\) \(x=2\)
c) \(\sqrt{x}+\sqrt{2-x}=\sqrt{\left(\sqrt{x}.1+\sqrt{2-x}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(x+2-x\right)}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\sqrt{x}=\sqrt{2-x}\) \(\Leftrightarrow\) \(x=1\)
1.Điều kiện xđ \(x\ge2,x\le4\)
Từ ĐKXĐ ta có
\(x\ge2\Leftrightarrow x-2\ge0\Leftrightarrow\sqrt{x-2}\ge0\left(1\right)\)
\(x\le4\Leftrightarrow4-x\ge0\Leftrightarrow\sqrt{4-x}\ge0\left(2\right)\)
Từ (1),(2) cộng vế theo vế ta có:
\(\sqrt{x-2}+\sqrt{4-x}\ge0+0=0\)
Dự đoán \(x=y=z=1\) ta tính được \(A=6+3\sqrt{2}\)
Ta sẽ c/m nó là GTLN của A
Thật vậy, ta cần chứng minh \(Σ\left(2+\sqrt{2}-2\sqrt{x}-\sqrt{1+x^2}\right)\ge0\)
\(\LeftrightarrowΣ\left(\frac{2\left(1-x\right)}{1+\sqrt{x}}+\frac{1-x^2}{\sqrt{2}+\sqrt{1+x^2}}\right)\ge0\)
\(\LeftrightarrowΣ\left(x-1\right)\left(1+\frac{1}{\sqrt{2}}-\frac{2}{1+\sqrt{x}}-\frac{x+1}{\sqrt{2}+\sqrt{1+x^2}}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)
\(\LeftrightarrowΣ\left(x-1\right)^2\left(\frac{1}{\left(1+\sqrt{x}\right)^2}-\frac{x+1}{\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)
BĐT cuối đủ để chứng minh
\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\ge\left(x+1\right)\left(1+\sqrt{x}\right)^2\)
Đặt \(1+x=2k\sqrt{x}\). Hence, theo Cauchy-Schwarz:
\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\)
\(=\sqrt{2}\left(\sqrt{2}+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\)
\(\ge\sqrt{2}\left(\sqrt{2}+\frac{x+1}{\sqrt{2}}\right)\left(\sqrt{2}x+\frac{x+1}{\sqrt{2}}\right)\)
\(=\frac{1}{\sqrt{2}}\left(x+3\right)\left(3x+1\right)=\frac{1}{\sqrt{2}}\left(3x^2+10x+3\right)\)
\(=\frac{1}{\sqrt{2}}\left(3\left(4k^2-2\right)x+10x\right)2\sqrt{2}x\left(3k^2+1\right)\)
Mặt khác \(\left(x+1\right)\left(1+\sqrt{x}\right)^2=\left(x+1\right)\left(x+1+2\sqrt{x}\right)\)
\(=2k\left(2k+2\right)x=4k\left(k+1\right)x\). Có nghĩa là ta cần phải c/m
\(3k^2+1\ge\sqrt{2}k\left(k+1\right)\Leftrightarrow\left(3-\sqrt{2}\right)k^2-2\sqrt{k}+1\ge0\)
Nó đúng theo AM-GM
\(\left(3-\sqrt{2}\right)k^2-\sqrt{2}k+1\ge\left(2\sqrt{3-\sqrt{2}}-\sqrt{2}\right)k\ge0\)
Hơi đẹp nhỉ nhưng xong r` đó :D
bunyakovsky:
\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(x+1\right)^2\)
\(\Leftrightarrow\sqrt{1+x^2}+\sqrt{2}.\sqrt{x}\le\sqrt{2}\left(x+1\right)\)
tương tự :phần còn lại + thêm với\(\left(2-\sqrt{2}\right)\left(x+y+z\right)\)
mk ko bit
Ta có
\(A=2x+\sqrt{4-2x^2}=\sqrt{\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2}\)
\(\le\sqrt{\left(2+1\right)\left(2x^2+4-2x^2\right)}=\sqrt{3.4}=2\sqrt{3}\)
Vậy GTLN là \(2\sqrt{3}\)đạt được khi \(\frac{2}{\sqrt{3}}\)